deep , dive and comparison
" of Python drivers for
Cassandraand Scylla

EuroPython 2020

Bonjour!

Alexys Jacob

- mongodb / redis / scylla

9 Gentoo Linux developer

CTO at - - keepalived / ipvsadm / consul
numberly tewlne pymongo

- team member

Open Source contributor
- MongoDB
- Scylla
- Apache Airflow
- contributing member

EuroPython uses Discord... Discord uses Scylla!

Check out the talk of Mark Smith, Director of Engineering at Discord

https://www.scylladb.com/2019/03/20/discord-on-the-joy-of-opinionated-systems/

Leveraging Consistent Hashing in Python applications

Check out my talk from EuroPython 2017 to get deeper into consistent hashing

B
Y
.

The Hash Ring

LR

R | ;"‘

https://www.youtube.com/watch?v=erINlrgygEk

Deep dive
Cassandra & Scylla token ring architectures

A clusteris a collection of nodes

L]
&3
o
AR

Cassandra ring

Each node is responsible for a partition on the token ring

800 +
Range 3

401-800
Range 2

Cassandra ring

1-400
Range 1

&

® ®
@ ®
® &
® ®
o L
® 800 + 1-400 ®
o o
p Range 3 Range 1 .
® ®
401-800
Range 2
o L]

Scylla ring

Replication Factor provides higher data availability

S E -
"2 X 3 B
3 2 e n— Node Z

Replication Factor = 2

044

Virtual Nodes = better partition distribution between nodes

o Node X W 9
D

Node Y w 9
&
o
@

- 20¥ @)

Replication Factor =2

Scylla’s Virtual Nodes are split into shards bound to cores!

: :Shard 1's chunk

| . Shard 2's chunk
. Shard 3's chunk

\/

Rows are located on nodes by hashing their partition key

Partition

(MurmurHash3) Hash Function

ID: 655AE... = .
Partition Key

ID NAME ADDRESS PHONE

655AE... JOHN SMITH 123 Main St. (555) 555 4498

Take away: shard-per-node vs shard-per-core architecture

Cassandra Scylla
hash(Partition Key) token leads to RF*nodes hash(Partition Key) token leads to RF*nodes cores

Node X
Node Y

Node X, CPU core N
Node Y, CPU core N

Partition
Hash Function

Partition
Hash Function

ID: 655AE... ID: 655AE...

Partition Key Partition Key

ID NAME ADDRESS PHONE ID NAME ADDRESS PHONE

655AE... JOHN SMITH 123 Main St. (555) 555 4498 655AE... JOHN SMITH 123 Main St. (555) 555 4498

Client drivers should leverage the token ring
architecture!

Naive clients route queries to any node (coordinator)

l—"""ﬁlfﬁ

Data replica

@

| The coordinator may not be a replica for the queried data!

SELECT * FROM motorbikes WHERE code = ‘R1250GS’ ‘ 3
P g i 5
Naive Client %

l""‘ﬂlfﬁ_

Coordinator Data replica
Node

Deep dive
Python cassandra-driver TokenAwarePolicy

Token Aware clients route queries to the right node(s)!

Cassandra
Pro

oordinator + Data replica

/c

RF=2

Token Aware
Client

Data replica

TokenAwarePolicy: Statement + routing key = node(s)

P
Token Aware ’ o
Sl SELECT * FROM motorbikes WHERE Godei=? Coordinator + Data replica
N J
Y
statement v

(partition key)

’—’A"/P o

DéEa replica

TokenAwarePolicy: Statement + routing key = node(s)

Token Aware
Client

import logging

from cassandra.cluster import Cluster

from cassandra.policies import DCAwareRoundRobinPolicy, TokenAwarePolicy

from cassandra.query import dict_factory
logging.basicConfig(level=1logging.DEBUG)

cluster = Cluster(

contact_points=["nodeX", "nodeY", "nodeZ"],

compression=True,

load_balancing_policy=TokenAwarePolicy(DCAwareRoundRobinPolicy()), # default

)

session = cluster.connect()
session.row_factory = dict_factory
session.set_keyspace("test")

statement = session.prepare("SELECT * FROM motorbikes WHERE code = ?") <——— Sta tement

for row in session.execute(statement, ("R1250GS",)):

{ routing_key

print(row)

cluster.shutdown()

SELECT * FROM motorbikes WHERE Eode=?
N J

Y ____\\(’____//

"""'AI/P

Data replica

Default TokenAwarePolicy(DCAwareRoundRobinPolicy)

- " 5"

SELECT * FROM motorbikes WHERE gode’=‘R1250GS’

murmur3hash(lR1250GS)) = partition 1 = node X + node Y o, a5

N J
Y

load balanced
(round-robin)

DC local nodes

¥ Can’t beat my Cassandra’s
TokenAwarePollcy(DCAwareRoundRoblnPollcy)'

Yes you can.
Use Scylla and a shard-per-core aware driver!

I

| T

Shard Aware clients route queries to the right node(s) + core!

«9@
Shard Aware ’

Client
Data replica

Scylla shard aware drivers: Python was missing!

Forks of DataStax drivers to retain maximal compatibility and foster fast iteration

e Java
o First one officially released in 2019

e Go (gocql, gocqlx)

o Usedin scylla-manager and other Go based tooling

o C++
o WIP Sad snake

Let's make a Python shard-aware driver!

cassandra-driver / scylla-driver structural differences

Token_Aware (é:‘?) 1
Cllent Q""///H\\"\\\

1 control connection (cluster metadata, topology)
1 connection per node
Token calculation selects the right connection to node to route queries

Shard Aware
Client

1 control connection (cluster metadata, topology)

1 connection per core per node

Token calculation selects the right node

Shard id calculation selects the connection to the right core to route queries

TODO: from cassandra-driver to scylla-driver

1 control connection (cluster metadata, topology)
o Useas-is

1 connection per core per node
o [CONNECEION needs to detect Scylla shard aware clusters (while retaining compatibility with Cassandra clusters)

o HostConnection pool should open a [€OANECEION to every core of its host/node

Token calculation selects the right node

o Use [TOKSRAWSFEPOIICY as-is

Shard id calculation selects the right connection to core to route queries
o CIUSEEr should pass down the query routing_key to the pool to allow connection selection
o Implement Shardid'€alCUlaEIoN based on the query routing_key token
o Host€onnection pool should select the connection to the right core to route the query

Implementing shard-awareness for scylla-driver

@ Inspired by Java driver’s shard aware implementation, Israel Fruchter paved the path and made the
first PR For Python shard-awareness!

° _ needs to detect Scylla shard aware clusters (while retaining compatibility with
Cassandra clusters)

class Connection(object):

@ -666,6 +700,9 @@ class Connection(object):

_check_hostname = False

_product_type = None

£ shard_id = ©
+ sharding_info = None
+

def __init_ (self, host='127.0.0.1"', port=9042, authenticator=None,
ssl_options=None, sockopts=None, compression=True,

cql_version=None, protocol_version=ProtocolVersion.MAX_SUPPORTED, is_control_connection=False,

@@ -1126,6 +1163,7 @@ def _send_options_message(self):

@defunct_on_error

def _handle_options_response(self, options_response):

+ self.shard_id, self.sharding_info = ShardingInfo.parse_sharding_info(options_response)

https://github.com/scylladb/python-driver/pull/6

scylla-driver shard-awareness detection

° _ detects Scylla shard aware clusters thanks to response message options:

+ class ShardingInfo(object):

+
+ def __init__ (self, shard_id, shards_count, partitioner, sharding_algorithm, sharding_ignore_msb):
+ self.shards_count = int(shards_count)

+ self.partitioner = partitioner

+ self.sharding_algorithm = sharding_algorithm

+ self.sharding_ignore_msb = int(sharding_ignore_msb)

+

+ @staticmethod

+ def parse_sharding_info(message):

+ shard_id = message.options.get('SCYLLA SHARD', [''])[@] or None

+ shards_count = message.options.get('SCYLLA_NR_SHARDS', [''])[©] or None

+ partitioner = message.options.get('SCYLLA_PARTITIONER', [''])[©] or None

+ sharding_algorithm = message.options.get('SCYLLA SHARDING_ALGORITHM', [''])[@] or None

+ sharding_ignore_msb = message.options.get('SCYLLA_ SHARDING_IGNORE_MSB', [''])[©] or None

scylla-driver connections to shards/cores

® _ pool should open a - to every core of its host/node

@@ -351,6 +353,7 @@ def _init_ (self, host, host_distance, session):

EE T T S S S S S S

this is used in conjunction with the connection streams. Not using the connection lock
self._stream_available_condition = Condition(self._lock)
self._is_replacing = False

self._connections = dict()

if host_distance == HostDistance.IGNORED:

1og. debug("Not opening connection to ignored host %s", self.host)

-360,18 +363,45 @@ def _ init_ (self, host, host distance, session):

return

log.debug("Initializing connection for host %s", self.host)

self._connection = session.cluster.connection_factory(host.endpoint)

first_connection = session.cluster.connection_factory(host.endpoint)
log.debug("first connection created for shard_id=%i", first_connection.shard_id)

self._connections[first_connection.shard_id] = first_connection

self._keyspace = session. keyspace
if self._keyspace:
self._connection.set_keyspace_blocking(self._keyspace)

first_connection.set_keyspace_blocking(self._keyspace)

if first_connection.sharding_info:

gction. sharding_info)

*2):

self.host.sharding_info = we;

for _ in range(first_cgoas
conn = self._sg _endpoint)
if conn.shard,

bnn. shard_id)

ocking(self._keyspace)

if len(self._coj arding_info.shards_count:

ding_info.shards_count:

if not len(self.

raise NoCon: 2ilable("not enough shard c opened”)

self._connections keys = shard id, values = connection obj

first connection detects shard support on the node

synchronous and optimistic way to get a connection to all
cores... we try at max 2*number of cores on the node...

...and Fail if not fully connected!

The EORREEEION to cvery core problem

e Thereis no way for a client to specify which shard/core it wants to connect to!
Would require Scylla protocol to diverge from Cassandra’s

o

@)
O
@)

This means that all other Scylla drivers are affected!
Sent an RFC on the mailing-list to raise the problem
Current status looking good

m Client source port based shard attribution logic
m Currently being implemented!

e TODO: connection to cores optimization

@)
©)
@)

Fix startup time with asynchronous connection logic
On startup try to connect to every shard only once
A connection to all shard should not be mandatory

[RFC] allow client connections to target a specific shard 12 views

@ Utrabug
@ o500 development
Hello
1 hope everyone is safe and getting through this moment s smoohtly as possible.
As a starter, I like to point out that - to my understanding - the Java driver also suffers from the points that | will be making here.
While working with Israel et al on the Python shard aware driver | found ot that client connections get d shard drob see system clients table).
Since inthe current protocol clients have no way to target . they h plement what we could call an optimistic mechanism until they geta allshards.
Javainitial 2a407436df diff-d2
hitps:/github. 18dd3cd1b
~Python initial github Tchdeeage
i L 150! 1823918f2a043719120¢
hitps:/github. 11c
Needless to say that while this is inefficient, it also means that drivers are not fully shard aware until they luckily manage to get a connection to all shards!
Good news is : i we were somehow satisfied of the performance of the drivers, we will do even better by addressing this issuel)
Idlike your point of view on two options I can see on my limited knowledge please.
Option 1- extend the protocol to allow clients to specify a shard._id to connect to
Maybe we could add a ke in the protocol so that clients could specify the shard_id they want to connect to making connections-to-shard predictable.
Ihave no clue how hard it or the consequences, 5o please go ahead.
Option 2 -change the way nodes assign shards to client connections on scylla
e but per client
‘This would save us from this eternal race and il originating f i
‘Thanks for considering this optimization <3
@ Ulrabug
@ toscyllens development

Hi
I wanted to give a follow-up on this thread since discussions took place in other ML lists and PRs

Current consensus based on recent discussions [1]:

so that clients,

-implement a
add ports (+ options) on scyl
2

target a shard id by setting up their connection socket source port
based alg be enabled

Y aware scylla client dr

[1]: https://github.com/scylladb/scylla/pull/6781
2] : https://github.com/scylladb/pythor-driver/pull/54

https://groups.google.com/g/scylladb-dev/c/SUx0OBlY7iw/m/sZdCWU7vBAAJ

scylla-driver enhanced

+

pool should open a

def _open_connection_to_missing_shard(self, shard_id):

Creates a new connection, checks its shard_id and populates our shard

aware connections if the current shard_id is missing a connection.

The “shard_id" parameter is only here to control parallelism on
attempts to connect. This means that if this attempt finds another

missing shard_id, we will keep it anyway.

NOTE: This is an optimistic implementation since we cannot control
which shard we want to connect to from the client side and depend on
the round-robin of the system.clients shard_id attribution.
with self._lock:

if self.is_shutdown:

return

conn = self._session.cluster.connection_factory(self.host.endpoint)

if conn.shard_id not in self._connections.keys():

Log. debug(
"New connection created to shard_id=%i on host %s",
conn. shard_id,
self.host
)
self._connections[conn.shard_id] = conn
if self._keyspace:
self._connections[conn.shard_id].set_keyspace_blocking(self._keyspace)
Log. debug(
"Connected to %s/%i shards on host %s (%i missing)",
len(self._connections.keys()),
self.host.sharding_info.shards_count,
self.host,
self.host.sharding_info.shards_count - len(self._connections.keys())

)

else:

conn. close()

self._connecting.discard(shard_id)

connections to shards/cores

def

_open_connections_for_all_shards(self):

Loop over all the shards and try to open a connection to each one.

with self._lock:
if self.is_shutdown:

return

for shard_id in range(self.host.sharding_info.shards_count):

self._connecting.add(shard_id)

to every core of its host/node

self._session.submit(self._open_connection_to_missing_shard, shard_id)

| asynchronous!

scylla-driver routing key token to core calculation

CIUSEEr should pass down the query routing_key to the pool to allow connection selection

def _query(self, host, message=None, ch=None):
if message is None:
message = self.message

pool = self.session._pools.get(host)
if not pool:
self._errors[host] = ConnectionException("Host has been marked down or removed")
return None
elif pool.1is_shutdown:
self._errors[host] = ConnectionException("Pool is shutdown")
return None

self._current_host = host

connection = None
try:
connection, request_id = pool.borrow_connection(
timeout=2.0,
|routing_key:self.query.routing_key if self.query else None

)

Implement _ based on the query routing_key token

o Pure Python calculation function was badly impacting driver performance and latency...!

Performance concern: move shard id calculation to Cython

o (Cassandraishardlinfo: Cython shard id calculation used by HOSECONNEEEION to route queries

cdef class ShardingInfo():

@staticmethod

def

parse_sharding_info(message):

wnn

Detect Scylla shard awareness support from response options message

shard_id = message.options.get('SCYLLA_SHARD', [''])[0@] or None

shards_count = message.options.get('SCYLLA_NR_SHARDS', [''])[@] or None

partitioner = message.options.get('SCYLLA_PARTITIONER', [''])[@] or None
sharding_algorithm = message.options.get('SCYLLA_SHARDING_ALGORITHM', ['']1)[@] or None
sharding_ignore_msbh = message.options.get('SCYLLA_SHARDING_IGNORE_MSB', ['']1)[0] or None

if not (shard_id or shards_count or partitioner == "org.apache.cassandra.dht.Murmur3Partitioner" or
sharding_algorithm == "biased-token-round-robin" or sharding_ignore_msb):

return 0, None

return int(shard_id), ShardingInfo(shard_id, shards_count, partitioner, sharding_algorithm, sharding_ignore_msb)

def

shard_id_from_token(self, int64_t token_input):
Find the right shard id (core) from the given routing_key's token
This 1s how we route queries to the right core!

wnn

cdef uint64_t biased_token = token_input + (<uint64_t>1 << 63);
biased_token <<= self.sharding_ignore_msb;

cdef int shardId = (<__uint128_t>biased_token * self.shards_count) >> 64;
return shardId

Pure Python \V

429.0309897623956 nsec per call 1

Cython
63.073349883779876 nsec per call

Almost 7x faster!

At the heart of scylla-driver’'s shard-awareness logic

° _ pool selects the connection to the right core to route the query

E o S S R S S S S S S S S R S S S S S S S S

shard_id = None

if self.host.sharding_info and routing_key:

t = self._session.cluster.metadata.token_map.token_class.from key(routing_key)

shard_id = self.host.sharding_info.shard_id from_token(t)

Calculate shard id from query routing_key token

conn = self._connections.get(shard_id)

I

Try to find a connection to the right shard id/core

missing shard aware connection to shard_id, let's schedule an
optimistic try to connect to it
if shard_id is not None:

if conn:

p 4

Use our direct connection to the right core to route the guery!

log.debug(
"Using connection to shard_id=%i on host %s for routing_key=%s",
shard_id,
self.host,
routing_key
)
elif shard_id not in self._connecting:
rate controlled optimistic attempt to connect to a missing shard
self._connecting.add(shard_id)

self._session.submit(self._open_connection_to_missing_shard, shard_id)

A

No connection to the right core yet, asynchronously try to get one

log.debug(
"Trying to connect to missing shard_id=%i on host %s (%s/%i)",
shard_id,
self.host,
len(self._connections.keys()),
self.host.sharding_info.shards_count

)

we couldn't find a shard aware connection, let's pick a random one
from our pool
if not conn:

conn = self._connections.get (random.choice(list(self._connections.keys())))

There was no connection to the right core, pick a random one #legacy

Python shard-aware driver
expectations & production results

o

H -0l
i [|

scylla-driver expectations checks

e 1 connection per core per node
o Number of cores on node times more connections open to each cluster node
[Production real-time processing rolling update effect:

Client CQL connections by Cluster

o More CPU requirements to handle/keepalive more connections
n Production Kubernetes resources adjustment to avoid pod CPU saturation / throttling

e Routing queries to the right core of the right node
o Reduced query latency... A_

180 ms

170 ms

160 ms

150 ms

140 ms

130 ms

120 ms

110 ms

100 ms

90ms.

80ms.

70ms

60ms.

50ms

40ms

16:22

16:24

16126

16:28

16:30

1632

16:34

16:36

16:38

16:40

16:42

16144

1646

1648

Max processing time

15% to 25% performance boost!

16:50 1652 16154 16:56 16:58 17.00 17.02 17.04 17.06 17.08 1710 1792 1714 1716 1718

1720

Max processing time

This is a max() worst case scenario graph/

| | 15% to 25% performance boost!

130 ms

All shards are not connected yet

\ N
- A

120ms

100 ms

More shards connected
Analytics job peak N - =
' \ | Better latency

A
Ya N

90ms

8oms

Same analytics job peak

60ms

50ms

40ms

16:22 16:24 16126 16:28 16:30 1632 16:34 16:36 16:38 16:40 16:42 1644 1646 1648 16:50 1652 16154 16:56 16:58 17.00 17.02 17.04 17.06 17:08 AL 1792 1714 1716 1718 1720

scylla-driver shard-awareness is awesome!

e movingMedian(max(processing_time), “15min”)

e Unexpected (and cool) side effect
o Reduced Scylla cluster load + reduced client latency = reduced resources on Kubernetes for the same workload!

scylla-driver recent & upcoming enhancements

Recent additions: shard-aware capability and connection statistics helpers

from cassandra.cluster import Cluster

cluster = Cluster()
session = cluster.connect()

if cluster.is_shard_aware():
print("connected to a scylla cluster")

stats = cluster.shard_aware_stats()
if all([v["shards_count"] == v["connected"] for v in stats.values()]):
print("successfully connected to all shards of all scylla nodes")

Use shard capable ports on Scylla when available
e scylla/pull/6781
e scylladb/python-driver/pull/54

Improve Scylla specific documentation

Merge & rebase latest cassandra-driver improvements

UCPU

https://github.com/scylladb/scylla/pull/6781
https://github.com/scylladb/python-driver/pull/54

S pip install scylla-driver

Repository
https://qgithub.com/scylladb/python-driver

PyPi
https://pypi.org/project/scylla-driver/

Documentation
https://scylladb.github.io/python-driver/master/index.html

Chat with us on ScyllaDB users Slack #pythonistas
https://slack.scylladb.com/

https://github.com/scylladb/python-driver
https://pypi.org/project/scylla-driver/
https://scylladb.github.io/python-driver/master/index.html
http://slack.scylladb.com/

Thanks for attending and making this EuroPython a success!

Catch me online: @ultrabug

Discord talk channel
Late questions, deep-dive remarks? Let’s keep in touch :)

" ek cstanare s drvers

Discord Numberly channel

Sponsor talk session tomorrow, Friday July 24th at 12:00 CEST
e Real-world experience sharing
e Open Source creations & contributions overview
e Conference talks experience, updates and feedbacks

UCPU

