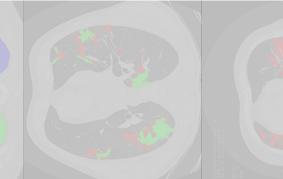


<u>Self Intro</u>

- Choi Ching Lam
- 17 year old, Form 5 student from Hong Kong
- Favourite languages: Python, Julia
- Currently interning at NVIDIA's AI Tech Center
- Into Computer Vision, aspires to become a researcher
- Email: ccl5a09@gmail.com
 - https://github.com/chinglamchoi
 - https://medium.com/@cchoi314



Background

Inspired by doctors from Wuhan on TV

Inspired by Johns Hopkins University's (Center for Systems

Science and Engineering (CSSE)) COVID-19 Dashboard

Relevant to previous work on brain tumour boundary

resection for lower grade glioma

Problem Statement

- Hospitals are overwhelmed with COVID-19 patients
 - Manpower shortage → Doctors (esp radiologists), etc
 - Supplies shortage → ventilators, masks, etc
 - Solution: Automate CT diagnosis confirmation with Al
 - Determine <u>severity</u> → <u>Triage patients</u>, allocate supplies
 - Gauge <u>mortality</u> probability
 - (Future) <u>Design personalised treatment</u>

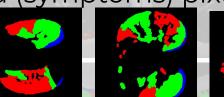
Corona-Net

- **1. Binary Classification**
 - a. Infected (1) / not-infected (0) with COVID-19

2. Binary Segmentation:

a. Predict all infected (symptoms) pixels of COVID-19 in CT

3. 3-Class Segmentation:



a. Predict all infected pixels & type (1 in 3) of symptoms:

ground glass, consolidation, pleural effusion

Technologies Used

Language: Python with NumPy library

O PyTorch

• Al library: PyTorch

Image processing libraries: Albumentations, Torchvision,

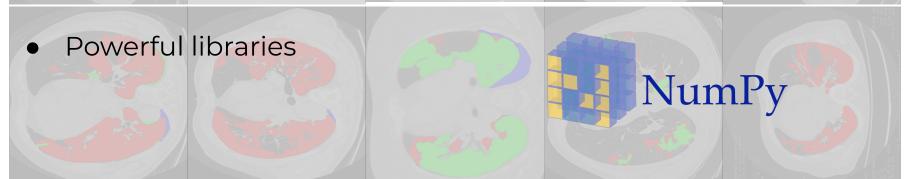
Scikit-image, Matplotlib

matpl tlib

NumPy

Python with NumPy

- Speed: dynamically typed
- NumPy: parallelism & vectorisation
- NumPy: better support for matrices & tensors & operations
- Easy to prototype with, elegant syntax



What to use for Image Processing?

- Matplotlib vs. Scikit-image vs. Torchvision vs. Albumentations
 - Matplotlib: General purpose
 - Scikit-image: Advanced algorithms
 - Torchvision: Tight integration with PyTorch
 - Albumentations: Biomedical Imaging

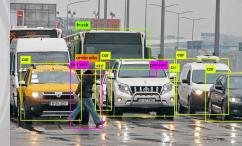
matpl tlib

Why PyTorch?

- More research / academia support
- Better customisation ability
- Similar to NumPy
- Dynamism e.g. Dynamic computation graphs

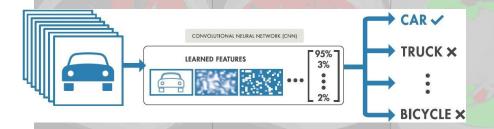
Model Architecture

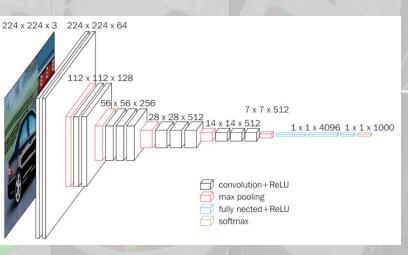
- For multi-label segmentation
- Classification vs. detection vs. segmentation
 - Classification: Input image → output class label
 - - Segmentation: Input image → output image mask



Classification

- Input image → output class label (FC layer)
- Can use vanilla Convolutional Neural Networks
- Deep CNNs: accuracy saturation & degradation problem
 - Residual Networks
 - Feature Pyramid Networks





Classification

• ResNets: Shortcut connections

Relieves pressure from added deep layers when identity

mapping

FPNs: lateral, top-down connections

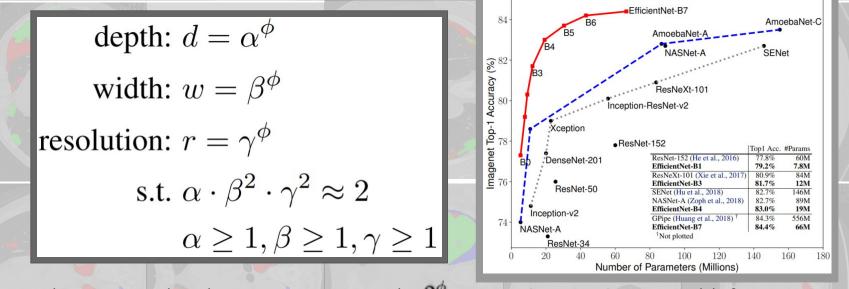
Fuses feature maps at different scales

Each feature map retains local & global information

Efficient-Net

Introduce novel <u>Compound Scaling Method</u>

Joint scaling of network 1) depth, 2) width, 3) input resolution



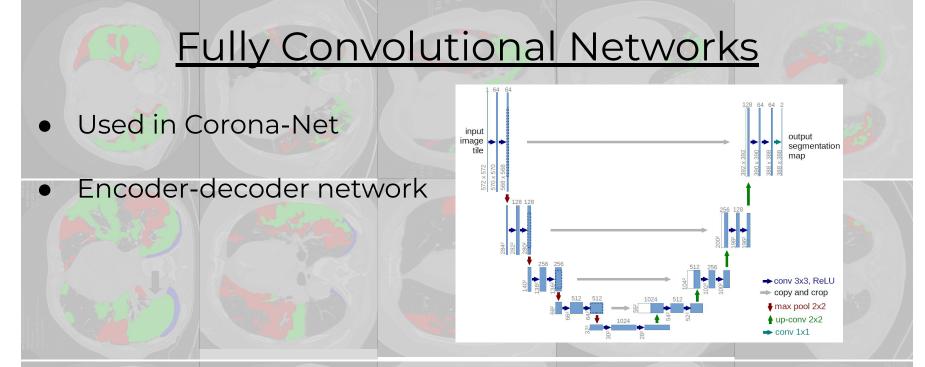
Upscale computational resources & FLOPS by 2^{ϕ}

SOTA on ImageNet with fewer parameters (less complexity) → more computationally efficient

Segmentation

<u>Image Segmentation</u> (binary, multi-class), semantic segmentation

Binary Segmentation Multi-class Segmentation Algorithm 1 Multi-Class Segmentation Algorithm 1 Binary Segmentation **Result:** 3D image mask $M \in \mathbb{R}^{3 \times H \times W}$ **Result:** Binary image mask $M \in \mathbb{R}^{H \times W}$ **for** *pixel in CT_scan_slice* **do** for pixel in CT_scan_slice do **if** *pixel* == *infected with Ground_glass* **then if** *pixel* == *infected with COVID-19* **then** pixel $\leftarrow 1$ pixel $\leftarrow 1$ **else if** *pixel* == *infected with Consolidation* **then** pixel $\leftarrow 2$; else **else if** *pixel* == *infected with Pleural_effusion* **then** pixel $\leftarrow 0$ pixel \leftarrow 3; end else end pixel $\leftarrow 0$; end end



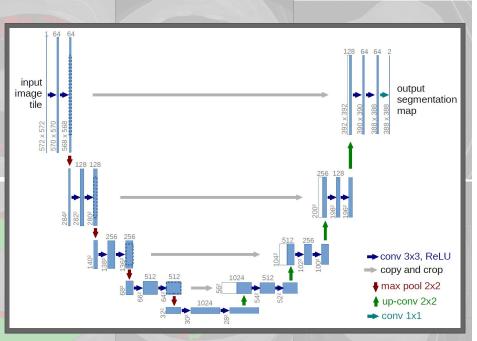
Learns convolutional filter directly not function

U-Net: FCN for biomedical imaging with symmetrical

upsampling & downsampling paths, SOTA

<u>U-Net</u>

- Introduce <u>symmetrical</u> contracting & expansive path
- - filter instead of function
- SOTA in ISBI Challenges
- Tailored to biomedical imaging
- Successful fusion of local to global, spatial-semantic features



Data & Augmentation

- <u>COVID-19 CT segmentation dataset</u>
 - <u>http://medicalsegmentation.com/covid19/</u>
 - Augmentation for better generalisation to latent data:
 - Elastic Transformations & Scale Shift → simulate natural deformations of human biological tissue
 - Random cropping
 shift invariance

 - Random rotations -> rotational invariance

Segmentation Evaluation

Evaluation Metrics	Accuracies & Losses (1: binary, 2: multi-class)			
1. Dice Coefficient {[0, 1] with 1 best}	Dice Coefficient	Rand Loss	Optimiser	Learning Rate
	0.5641	0.2167	Adam	1e-02
$Dice = rac{2 \left A \cap B ight }{\left A ight + \left B ight }$	0.7374	0.1031	Adam	1e-03
A + B	0.7965	0.0766	Adam	1e-04
the state of the second	0.4745	0.1591	Adam	1e-05
2. Rand Loss {[0, 1] with 0 best}	Dice Coefficient	Rand Loss	Optimiser	Learning Rate
	0.5160	0.2490	Adam	1e-02
with 0 best} $RI = \frac{a+d}{\binom{n}{2}}, RE = 1 - RI$	0.5900	0.2114	Adam	1e-03
(2)	0.6160	0.1985	Adam	1e-04
	0.5001	0.2565	Adam	1e-05

Future Development

- <u>Recommend Personalised Medicine / Treatment</u>
 - Based on extent (area) and occurrence of particular
 - symptoms of each COVID-19 patient
- Weakly-supervised segmentation
 - Using Global Average Pooling & Object Region Mining
 - No need for labour-intensive mask annotations

References

- MedicalSegmentation.com. (n.d.). COVID-19 CT segmentation dataset. Retrieved from <u>http://medicalsegmentation.com/covid19/</u>
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE CVPR, 2016, pp. 770–778.
- M. Tan and Q. V. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.
- Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017.
- J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of IEEE Conference on CVPR, 2015.
- O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In MICCAI. Springer.
- B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In CVPR, 2016.

Contact Me

- Choi Ching Lam
- Email: ccl5a09@gmail.com
 - https://github.com/chinglamchoi
 - https://medium.com/@cchoi314

- https://www.linkedin.com/in/ching-lam-choi-7609541a0/
- https://twitter.com/cchoi314

Al Code-In

- Hong Kong **non-profit** (registering) co-founded by myself and Minnie Chan
- Founded to enhance the AI literacy of middle/high school students globally through 2 initiatives: 1) AI Code-In contest & 2) AI lectures/tutorials
 - 1) Annual 1.5 months long global competition, where students receive mentorship from AI organisations & professionals
 - 2) In-person (after COVID-19) & remote AI tutorials, webinars and lectures for students. Our team will tutor students on AI concepts (e.g. CNNs, LSTMs, attention), while invited speakers (industry professionals, professors) guest lecture on AI-related topics
- We are currently recruiting organisations, projects & mentors!
 - https://aicode-in.github.io/AICode-In
 - aicodein.org@gmail.com

