
Object Internals in Python
- Mridu Bhatnagar

Who am I?

- Python Enthusiast

- Backend Developer by profession.

- I love speaking at various meetup groups and
conferences.

- Twitter handle - @Mridu__

Learning
Objectives

- objects
- memory address
- type of objects (mutable
and immutable objects)
- difference between is vs ==
operator
- optimizations

An object is an entity that has attribute and
methods associated with it.

Example:

The location where the object gets stored in
memory is referred to as memory address.

Pictorial Representation

id(object) - id is a built-in function. It is used to
determine the memory address of the object.

Mutable objects and Immutable objects.

Objects of built-in type (list, dictionary, sets) are
mutable.

Objects of built-in type (int, float, bool, str, tuple)
are immutable.

Difference between is vs == operator

Different use cases to discuss memory
optimization in Python

1. Sort and Sorted built-in methods

 2. Concept of Integer Caching

 3. Concept of String Interning

As the Python code compiles identifiers are interned.

- variable names
- function names
- class names

Rule:

* start with _ or a letter.
* may contain _, letter, numbers.

4. Copying List using Assignment
operator

 5. Shallow Copy in Lists

The outermost container is duplicated, but the
copy is filled with references to the same items
held by the original container.

 6. Deep Copy in Lists

Duplicates do not share references of
embedded objects.

 Why is it important to learn object internals?

* operator copies the memory
references

 Summary

- object internals
- memory address use cases
- type of objects (mutable,
immutable)
- difference between is vs ==
operator
- optimizations

