‘o

Object Internals in Python

- Mridu Bhatnagar

Who am [|?

- Python Enthusiast
- Backend Developer by profession.

- | love speaking at various meetup groups and
conferences.

- Twitter handle - @Mridu___

Learning
Objectives

B

- objects

- memory address

- type of objects (mutable
and immutable objects)

- difference between is vs ==
operator

- optimizations

An object is an entity that has attribute and

methods associated with it.

Example:

Type Memory Address

|nteger 38961400

>> a

>> type(a)

<class "int'>

> b = "Python"

>> type(b)
SclllasSEESiing >

s L oe [, 2, 2. 5, 5
>> type(L)

<class 'list'>

s> e dtedg T, ety Beldn

>> type(D)

<class 'dict'>

The location where the object gets stored in
memory is referred to as memory address.

=

Pictorial Representation

Variables s

1 <— 38961496

Python <— 140293587122480

[1,2,3] ez 140293586851888

{a" 2} <‘ 140293586977128

True <-— 0342224

!

Values

———= Memory Address

id(object) - id is a built-in function. It is used to
determine the memory address of the object.

=

> a = 2

>> id(a)

10911168

> b = "Python"

>> id(b)
139740207470888

> L= b, 2. 3y 4y B
>> id(L)
139740206887176

= = e et Heta Yol

>> 1d(D)
139740207534792

Mutable objects and Immutable objects.

=

Objects of built-in type (list, dictionary, sets) are

mutable.

>>0L = 11,02, 3, 4, 5]
>> id(L)
140712008688904

>> L.append(10)
L, 2y 8, &y B, 18]
>>1d(L)

140712008688904

Obijects of built-in type (int, float, bool, str, tuple)

are immutable.

> a = (10, 20, 30, 40)
> id(a)
140712009040824

>> a.append(50) # raises error tuple object has no attribute append()

>> a.pop() # raises error tuple object has no attribute pop()

>> a = (10, 20, 30, 40, 50)

>> id(a)

140712009726176

Difference between is vs == operator

=

10
= 10

= b # Note it is double equals to (comparision) operator

10
= 20

b # Note it is double equals to (comparision) operator

>> a 10

> b 10

>> id(a), id(b)

(10911424, 10911424)

>> a is b #ichecks if memory address of objects is same or not
True

s> Le [k, 2, 8]

== (Ll = (M, 2, 3, A

>> id(L), id(L1)

(140712008688648, 140712008688712)

>> a is b #ichecks if memory address of objects is same or not

False

Different use cases to discuss memory

optimization in Python

1. Sort and Sorted built-in methods

=

> a = [10, 50, 40, 60]
>> id(a)

139740206888200

>> a.sort() # In-place sort. No new object gets created.

>> id(a)

139740206888200

> L = [10, 50, 40, 80, 90]

>> L1 = sorted(L) # Creates a new list object.
>> id(L), id(L1)

(139740206887944, 139740206888072)

2. Concept of Integer Caching

=

>> 3 10

>> b 10

>> id(a), id(b)
(10911424, 10911424)

>> a = 257
SSDE =) 5
>> id(a), id(b)

(140006122211312, 140006121726512)

3. Concept of String Interning

As the Python code compiles identifiers are interned.

- variable names
- function names
- class names

Rule:

* start with _ or a letter.
* may contain _, letter, numbers.

>> a "hello"
>> b "hello"
>> id(a), id(b)

(140065477116592, 140065477116592)

>> a "hello_world"

> b "hello_world"

>> id(a), id(b)

(140065477116784, 140065477116784)

>> a "life is beautiful"
> b = "life is beautiful"
>> id(a), id(b)

(140065477116592, 140065477116848)

>> import sys

>> a = sys.intern("life is beautiful")

>> b = sys.intern("life is beautiful")

>> id(a), id(b)

(140065477116912, 140065477116912)

4. Copying List using Assignment
operator

=

L1 = [3, [4, 51, 6, (7, 8, 9)]
L2 = L1

id(L1)

140404980960328

id(L2)

140404980960328
L1[1].append(6)

Ll

[3, [4, 5, 6], 6, (7, 8, 9)]

5. Shallow Copy in Lists

=

The outermost container is duplicated, but the
copy is filled with references to the same items

held by the original container.

> L1 = [3, [4, 51, 6, (7, 8, 9)]
s L2 = nsnliil)

>> id(L1), id(L2)
(140671326131976, 140671326132808)

> id(L1[e]), id(Li[1]), id(L1[2]), id(L1[3])
(10911200, 140671326793544, 10911296, 140671326532088)
>> id(L2[e]), id(L2[1]), id(L2[2]1), id(L2[3])
(10911200, 140671326793544, 10911296, 140671326532088)

6. Deep Copy in Lists

Duplicates do not share references of

embedded objects.

>>
>>
>>
>>
>>
>>

[3)

>>

[3’

>>

L35

import copy

L1 [3, 4, [5, 6, 71, 9, (10, 11, 12)]
L2 = copy.copy(L1) # Creates shallow copy
L3 = copy.deepcopy(L1)

L1[2].append(20)

L1

4, [5, 6, 7, 201, 9, (10, 11, 12)]

L2

4, [5, 6, 7, 201, 9, (10, 11, 12)]

L3

4, [5, 6, 71, 9, (10, 11, 12)]

Why is it important to learn object internals?

=

* operator copies the memory

references

Python 3.5.2 (default, Apr 16 2020, 17:47:17)

[GCC 5.4.0 20160609] on 1linux

Type "help", "copyright", "credits" or "license" for more information.
x> L= [[0]*3]*3

>>> L

[[6, O, O], [6, O, O], [0, O, 0]]
>>> id(L)

139998105552008

>>> L[0][0] =1

>>> L

LY 05000 [dh 65000 [6, 0]
>>> I

def append_to(element, to=[]):
to.append(element)

return to

my_list = append_to(12)

print(my_list)
my_another_list = append_to(42)

print(my_another_list)

Summary

- object internals

- memory address use cases
- type of objects (mutable,
immutable)

- difference between is vs ==
operator

- optimizations

Q FOR LETTING ME JOIN

