
anastasiatymo

by Anastasiia Tymoshchuk

Can We Deploy Yet?

anastasiatymo

• Lead Dev at Scoutbee in Berlin

• PyBerlin organiser

• 10 years in software development

• 7 years in Python

• Happy Pythonista 🐍 😊

Few words about myself

anastasiatymo

What "Production" means
to you?

anastasiatymo

"You’ve worked hard on your project. It
looks like all the features are actually
complete, and most even have tests.

You can breathe a sigh of relief. You're
done.

Or are you?"

Is my code ready
for Production?

from "Release It! Design and Deploy Production-
ready Software" book by Michael T. Nygard

anastasiatymo

There are couple of checks for you
before going to production

anastasiatymo

check your code now 🐍 😎

Ready for Production?

• Exception handling

• How to become a detective or meaningful logging

• From code review to production or effective CI/CD

• Docker? No problem!

• More hints and ideas

anastasiatymo

Exceptions

anastasiatymo

We don't want to return to the user
"500 Internal Server Error"

https://docs.python.org/3.8/library/exceptions.html

try:

 ... # some code here might raise an exception

except Exception as e: # catching exceptions

 print("Exception occurred:", repr(e))

https://docs.python.org/3.8/library/exceptions.html
https://docs.python.org/3.8/library/exceptions.html

anastasiatymo

Catching Exception and BaseException

try:

 raise Exception("My custom exception")

except Exception as e: # catching Exception is not the best idea

 print("Exception occurred:", repr(e))

except BaseException as e: # catching BaseException is even worse

 print("BaseException occurred:", repr(e))

anastasiatymo

Guess which one will be printed
try:

 input()

except Exception as e:

 print("Exception occurred:", repr(e))

except BaseException as e:

 print("BaseException occurred:", repr(e))

> BaseException occurred: KeyboardInterrupt()

anastasiatymo

Hierarchy of exceptions in Python
BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
 +-- StopIteration
 +-- StopAsyncIteration
 +-- ArithmeticError
 | +-- FloatingPointError
 | +-- OverflowError
 | +-- ZeroDivisionError
 +-- AssertionError
 +-- AttributeError
 (...)

anastasiatymo

Handling exceptions

try:

 raise Exception("Something custom happened!!!")

except Exception as e:

 print("Printing exception", repr(e))

 raise Exception("I want my custom message!!!")

anastasiatymo

Handling exceptions
Traceback (most recent call last):
 File "my_awesome_code.py", line 2, in <module>
 raise Exception("Something custom happened!!!")
Exception: Something custom happened!!!

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
 File "my_awesome_code.py", line 5, in <module>
 raise Exception("I want my custom message!!!")
Exception: I want my custom message!!!
Printing exception Exception('Something custom happened!!!')

anastasiatymo

Handling exceptions - raising from

try:

 raise Exception("Something custom happened!!!")

except Exception as e:

 print("Printing exception", repr(e))

 raise Exception("I want my custom message!!!") from e

anastasiatymo

Handling exceptions - raising from
Traceback (most recent call last):
 File "my_awesome_code.py", line 2, in <module>
 raise Exception("Something custom happened!!!")
Exception: Something custom happened!!!

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "my_awesome_code.py", line 5, in <module>
 raise Exception("I want my custom message!!!") from e
Exception: I want my custom message!!!
Printing exception Exception('Something custom happened!!!')

anastasiatymo

Custom exceptions

class MyCustomException(Exception):
 pass

try:
 raise MyCustomException("Something custom happened!!!")
except MyCustomException as e:
 print("We are handling this exception here!", repr(e))

anastasiatymo

More to learn

anastasiatymo

Logging

anastasiatymo

from The Twelve-Factor App

“Treat logs as event streams

Logs provide visibility into the behavior of a running app. (...)

Logs are the stream of aggregated, time-ordered events collected from the
output streams of all running processes and backing services. Logs in their
raw form are typically a text format with one event per line (though
backtraces from exceptions may span multiple lines). Logs have no fixed
beginning or end, but flow continuously as long as the app is operating.”

anastasiatymo

• when

• where

• what

• who

• outcome

Main logging attributes

anastasiatymo

How do we usually log something?

import logging

my_logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

my_logger.info(
 "Hello Pythonista! Conference name %s, talk name %s, key_id = %s"
 % ("EuroPython", "Can we deploy yet?", "1234")
)

INFO:__main__:Hello Pythonista! Conference name EuroPython, talk name
Can we deploy yet?, key_id = 1234

anastasiatymo

How can we improve?
Maybe Structlog?

anastasiatymo

Logging with Structlog
import structlog

logger_structlog = structlog.get_logger()

logger_structlog.info(
 "Hello Pythonista!",
 key_id="1234",
 conference_name="EuroPython",
 talk_name="Can we deploy yet?",
)

2020-07-19 21:38.48 Hello Pythonista! conference_name=EuroPython
key_id=1234 talk_name=Can we deploy yet?

anastasiatymo

How can we improve?
Definitely Structlog!

anastasiatymo

Let's take a closer look

anastasiatymo

import structlog

logger_structlog = structlog.get_logger(__name__)

logger_structlog = logger_structlog.bind(
 key_id="1234", conference_name="EuroPython", talk_name="Can we deploy yet?"
)
try:
 raise Exception("Oh, something went wrong...")
except Exception:
 logger_structlog.exception("logging exception")

2020-07-19 21:43.48 logging exception
conference_name=EuroPython key_id=1234 talk_name=Can we deploy yet?
Traceback (most recent call last):
 File "my_awesome_code.py", line 9, in <module>
 raise Exception("Oh, something went wrong...")
Exception: Oh, something went wrong...

anastasiatymo

{
 "event": "Hello Pythonista!",
 "level": "europython",
 "logger": "test",
 "timestamp": "2020-07-19T19:47:03.514339Z"
}

Also in json format!

anastasiatymo

Demo time!👩💻

anastasiatymo

More to learn about Structlog

anastasiatymo

Effective CI/CD

anastasiatymo

• test coverage

• reliability

• fault isolation

• transparency

• code quality

• faster development

• code review improvements

Continuous Integration

anastasiatymo

• self-hosted solution

• paid solution

• free for open-source

Continuous Integration

anastasiatymo

anastasiatymo

anastasiatymo

Demo time!👩💻
https://github.com/atymoshchuk/can_we_deploy_yet/blob/master/.github/workflows/python-app.yml

https://github.com/atymoshchuk/can_we_deploy_yet/blob/master/.github/workflows/python-app.yml
https://github.com/atymoshchuk/can_we_deploy_yet/blob/master/.github/workflows/python-app.yml

anastasiatymo

Docker? No Problem!

anastasiatymo

• do not use root user

• use trusted and well-known images

• use COPY instead of ADD

• lint your Dockerfile

• save images in your docker registry and
maintain them

• check authenticity of the docker image

Secure your Docker images

anastasiatymo

Do not use root user

FROM ubuntu
ENV USER python # Default value
ENV GROUP python # Default value
RUN mkdir /app

Create group, create user, add user to group
RUN groupadd -r "$GROUP" && useradd -r -g "$GROUP" -s /bin/bash "$USER"

WORKDIR /app
COPY . /app

Change owner of directories and files to USER and GROUP
RUN chown -R "$USER":"$GROUP" /app

USER "$USER" # Change user

anastasiatymo

Demo time!👩💻

anastasiatymo

More hints

anastasiatymo

Do you document
your code?

anastasiatymo

"There is a secret that needs to
be understood in order to write
good software documentation:

there isn’t one thing called
documentation, there are four."

• tutorials,
• how-to guides,
• technical reference
• explanation

from https://documentation.divio.com/

https://documentation.divio.com/
https://documentation.divio.com/

anastasiatymo

• start as simple as possible

• go to version controlled docs
How to start?

anastasiatymo

• start with Sphinx

• try Read The Docs
How to start?

anastasiatymo

Demo time!👩💻

anastasiatymo

Books for further reading

... and many more referenced on https://atymo.me/

https://atymo.me/
https://atymo.me/

anastasiatymo

Thank you! Questions?

