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• Lead Dev at Scoutbee in Berlin 

• PyBerlin organiser 

• 10 years in software development 

• 7 years in Python 

• Happy Pythonista 🐍 😊

Few words about myself
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What "Production" means 
to you?
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"You’ve worked hard on your project. It 
looks like all the features are actually 
complete, and most even have tests.  

You can breathe a sigh of relief. You're 
done. 

Or are you?"

Is my code ready  
for Production?

from "Release It! Design and Deploy Production-
ready Software" book by Michael T. Nygard
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There are couple of checks for you  
before going to production
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check your code now 🐍 😎

Ready for Production?

• Exception handling  

• How to become a detective or meaningful logging  

• From code review to production or effective CI/CD  

• Docker? No problem!  

• More hints and ideas
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Exceptions
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We don't want to return to the user 
"500 Internal Server Error"

https://docs.python.org/3.8/library/exceptions.html

try:

    ...  # some code here might raise an exception

except Exception as e:  # catching exceptions

    print("Exception occurred:", repr(e))

https://docs.python.org/3.8/library/exceptions.html
https://docs.python.org/3.8/library/exceptions.html
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Catching Exception and BaseException

try:

    raise Exception("My custom exception")

except Exception as e:  # catching Exception is not the best idea

    print("Exception occurred:", repr(e))

except BaseException as e:  # catching BaseException is even worse 

    print("BaseException occurred:", repr(e))
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Guess which one will be printed
try:

    input()

except Exception as e:

    print("Exception occurred:", repr(e))

except BaseException as e:  

    print("BaseException occurred:", repr(e))       

> BaseException occurred: KeyboardInterrupt()
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Hierarchy of  exceptions in Python
BaseException
 +-- SystemExit
 +-- KeyboardInterrupt
 +-- GeneratorExit
 +-- Exception
      +-- StopIteration
      +-- StopAsyncIteration
      +-- ArithmeticError
      |    +-- FloatingPointError
      |    +-- OverflowError
      |    +-- ZeroDivisionError
      +-- AssertionError
      +-- AttributeError
      (...)
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Handling exceptions

try:

    raise Exception("Something custom happened!!!")

except Exception as e:

    print("Printing exception", repr(e))

    raise Exception("I want my custom message!!!")
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Handling exceptions
Traceback (most recent call last):
  File "my_awesome_code.py", line 2, in <module>
    raise Exception("Something custom happened!!!")
Exception: Something custom happened!!!

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "my_awesome_code.py", line 5, in <module>
    raise Exception("I want my custom message!!!")
Exception: I want my custom message!!!
Printing exception Exception('Something custom happened!!!')
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Handling exceptions - raising from

try:

    raise Exception("Something custom happened!!!")

except Exception as e:

    print("Printing exception", repr(e))

    raise Exception("I want my custom message!!!") from e



anastasiatymo

Handling exceptions - raising from
Traceback (most recent call last):
  File "my_awesome_code.py", line 2, in <module>
    raise Exception("Something custom happened!!!")
Exception: Something custom happened!!!

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "my_awesome_code.py", line 5, in <module>
    raise Exception("I want my custom message!!!") from e
Exception: I want my custom message!!!
Printing exception Exception('Something custom happened!!!')
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Custom exceptions

class MyCustomException(Exception):
    pass

try:
    raise MyCustomException("Something custom happened!!!")
except MyCustomException as e:  
    print("We are handling this exception here!", repr(e))
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More to learn
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Logging
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from The Twelve-Factor App

“Treat logs as event streams

Logs provide visibility into the behavior of a running app. (...) 

Logs are the stream of aggregated, time-ordered events collected from the 
output streams of all running processes and backing services. Logs in their 
raw form are typically a text format with one event per line (though 
backtraces from exceptions may span multiple lines). Logs have no fixed 
beginning or end, but flow continuously as long as the app is operating.”
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• when 

• where 

• what 

• who 

• outcome

Main logging attributes
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How do we usually log something?

import logging

my_logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)

my_logger.info(
    "Hello Pythonista! Conference name %s, talk name %s, key_id = %s"
    % ("EuroPython", "Can we deploy yet?", "1234")
)

INFO:__main__:Hello Pythonista! Conference name EuroPython, talk name 
Can we deploy yet?, key_id = 1234
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How can we improve?
Maybe Structlog?
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Logging with Structlog
import structlog

logger_structlog = structlog.get_logger()

logger_structlog.info(
    "Hello Pythonista!",
    key_id="1234",
    conference_name="EuroPython",
    talk_name="Can we deploy yet?",
)

2020-07-19 21:38.48 Hello Pythonista!              conference_name=EuroPython 
key_id=1234 talk_name=Can we deploy yet?
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How can we improve?
Definitely Structlog!



anastasiatymo

Let's take a closer look
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import structlog

logger_structlog = structlog.get_logger(__name__)

logger_structlog = logger_structlog.bind(
    key_id="1234", conference_name="EuroPython", talk_name="Can we deploy yet?"
)
try:
    raise Exception("Oh, something went wrong...")
except Exception:
    logger_structlog.exception("logging exception")

2020-07-19 21:43.48 logging exception              
conference_name=EuroPython key_id=1234 talk_name=Can we deploy yet? 
Traceback (most recent call last): 
  File "my_awesome_code.py", line 9, in <module> 
    raise Exception("Oh, something went wrong...") 
Exception: Oh, something went wrong...
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{ 
  "event": "Hello Pythonista!", 
  "level": "europython", 
  "logger": "test", 
  "timestamp": "2020-07-19T19:47:03.514339Z" 
}

Also in json format!
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Demo time!👩💻
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More to learn about Structlog
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Effective CI/CD
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• test coverage 

• reliability 

• fault isolation 

• transparency 

• code quality 

• faster development 

• code review improvements

Continuous Integration
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• self-hosted solution 

• paid solution 

• free for open-source

Continuous Integration
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Demo time!👩💻
https://github.com/atymoshchuk/can_we_deploy_yet/blob/master/.github/workflows/python-app.yml

https://github.com/atymoshchuk/can_we_deploy_yet/blob/master/.github/workflows/python-app.yml
https://github.com/atymoshchuk/can_we_deploy_yet/blob/master/.github/workflows/python-app.yml
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Docker? No Problem!
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• do not use root user 

• use trusted and well-known images 

• use COPY instead of ADD 

• lint your Dockerfile 

• save images in your docker registry and 
maintain them 

• check authenticity of the docker image

Secure your Docker images
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Do not use root user

FROM ubuntu
ENV USER python # Default value
ENV GROUP python # Default value
RUN mkdir /app

# Create group, create user, add user to group
RUN groupadd -r "$GROUP" && useradd -r -g "$GROUP" -s /bin/bash "$USER"
 
WORKDIR /app
COPY . /app

# Change owner of directories and files to USER and GROUP
RUN chown -R "$USER":"$GROUP" /app 

USER "$USER"  # Change user
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Demo time!👩💻
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More hints
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Do you document 
your code?
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"There is a secret that needs to 
be understood in order to write 
good software documentation: 

there isn’t one thing called 
documentation, there are four."

• tutorials,  
• how-to guides,  
• technical reference 
• explanation

from https://documentation.divio.com/

https://documentation.divio.com/
https://documentation.divio.com/
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• start as simple as possible 

• go to version controlled docs
How to start?
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• start with Sphinx 

• try Read The Docs
How to start?
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Demo time!👩💻
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Books for further reading

... and many more referenced on https://atymo.me/

https://atymo.me/
https://atymo.me/
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Thank you! Questions?


