Production-ready Docker
packaging for Python

ltamar Turner-Trauring

https://pythonspeed.com

1/32

https://pythonspeed.com/

Why Docker packaging is
complicated

1970s: Unix

1980s: TCP/IP networking
1990s: Python

2000s: Linux cgroups

2010s: Docker, modern Python packaging
2020s: & & &

2/32

The problem: too much to cover

3/32

The problem: too much to cover

e We only have 30 minutes.

4/32

The problem: too much to cover

e We only have 30 minutes.

e Over 60 packaging best practices.

5/32

The problem: too much to cover

e We only have 30 minutes.
e Over 60 packaging best practices.

e My training class takes 1.5 days.

6/32

Today: learn a process

* You have limited time at work, can get interrupted at
any moment.

e Thus:
o |terative development.
o Most important parts first.
o Each step builds on previous steps.

o Will give some examples best practices, and link to
resources at end of talk with far more details.

7/32

An iterative process

N

oo N v MW

. Get something working.

. Security.

. Running in CI.

. Make images easy to identify and debug.
. Improved operational correctness.

. Reproducible builds.

. Faster builds.

. Smaller images.

8/32

1. Get something working

FROM python:3.8-slim-buster
CoPY . .

RUN pip install .

ENTRYPOINT ["./run-server.sh"]

9/32

2. Security

» Before you can deploy anything publicly, it needs to
be secure.

e So we do that next.

10/32

2. Security: Don't run as root

FROM python:3.8-slim-buster
RUN useradd --create-home appuser
USER appuser

WORKDIR /home/appuser

COPY . .

RUN pip install .

ENTRYPOINT ["./run-server.sh"]

11/32

2. Security: Other best practices

Run with reduced capabilities.

Make sure to install system package updates.

Organizational processes to update dependencies
when security fixes come out.

And more!

12/32

3.Cl

* You don't want to manually hand-build each image.
» You want teammates to be able to build images.

* So next step: integrate image building to your
build/Cl system.

#!/bin/bash
set -euo pipefail

py.test

docker build -t yourimage:latest .
docker push yourimage:latest

13/32

3. Cl: Tag based on branch

* You want to build image for feature branch 123-
more-cowbell automatically.

» You want production not to be impacted.

#!/bin/bash
set -euo pipefail

GIT _BRANCH=S$(git rev-parse --abbrev-ref HEAD)

docker build -t "yourimage:SGIT BRANCH" .
docker push "yourimage:SGIT BRANCH"

14 /32

3. Cl: Other best practices

e Once a week, rebuild without caching (- -pull --
no-cache) and redeploy.

e Run security scanners.

e Warm up the build cache with docker pull to get
faster builds.

e And more!

15/32

4. Make it debuggable

» You've started automatically building and (probably)
deploying.

» More likely to see errors.
 Lots of images all over the place.

» Next step: make images identifiable and easier to
debug.

16/32

4. Debuggable: Tracebacks on
crashes in C code

e If you have a bug in Python code, you get a
traceback.

* If you have a bug in C code, you get a silent crash...

e ..unless you enable Python's built-in faulthandler.

ENV PYTHONFAULTHANDLER=1
ENTRYPOINT ["python", "yourprogram.py"]

17/32

4. Debuggable: Other best
practices

e Record build metadata in the image using Docker
labels.

e Write a smoke test for the build.

 Pre-install useful debugging tools.

18 /32

5. Improve operational
correctness

Running in production, so you want to prevent
operational problems.

Correct and fast startup.

Fast shutdown.

Help the runtime environment correctly detect
frozen processes.

19/32

5. Operational correctness: Pre-
compile bytecode

e Python compiles source code . pyc for faster startup.

* If your image doesn't have . pyc, startup will be
slower.

Compile installed code:
RUN python -c "import compileall; \
compileall.compile_path(maxlevels=10)"

Compile code in a directory:
RUN python -m compileall yourpackage/

20/32

5. Operational correctness:
Other best practices

» Correct signal handling for shutdowns.
e Handle zombie processes with init.
o Health checks.

e And more!

21/32

6. Reproducible builds

» Over the course of two weeks, your major
dependencies won't change dramatically.

e Over six months, some of them will.
e Over two years, most of them will.

* So next, you want reproducible builds so you can
update in a controlled manner.

22/32

6. Reproducible builds: Choose
a good base image

» You'll want a Linux OS which does security updates
while still guaranteeing backwards compatibility, for
example Ubuntu LTS, Debian Stable, or CentOS.

» The official python images are based on Debian
Stable, but give access to newer (or older) Python.

e python:3.8-slim-buster means "Python 3.8, on
Debian Buster, the smaller version".

23/32

6. Reproducible builds: More
best practices

 Pin Python package dependencies.

» Set up an organizational process to update Python
dependencies.

e Optionally, pin system package dependencies.

e And more!

24/32

7. Faster builds

e Your images are now packaged correctly, so now you
can focus on optimizations.

» Starting point: your time is expensive, you don't
want to wait for builds.

25/32

. '
7. Faster builds: Don't use
Alpine Linux
 Alpine Linux is a small base image—but it can't use
precompiled wheels from PyPI.
» As aresult, you need to compile everything.
e Example: install pandas and matplotlib.
o python:3.8-slim-buster: 30 seconds.
o python:3.8-alpine: 1500 seconds, 50x slower!

26/32

7. Faster builds: More best
practices

e COPY in files only when needed
 Like COPY, use ARG as late as possible.

* Install dependencies separately from your code.

271732

8. Smaller images

 Final step is to make smaller images.

* It's nice to be more efficient, it can speed up test
runs and production startup, but usually not the first

thing to do.

28/32

8. Smaller images: Disable pip's
caching

» By default pip keeps copies of the downloaded
package, in case you reinstall later.

e This wastes space, and you won't need it.

RUN pip install --no-cache-dir -r requirements.txt

29/32

8. Smaller images: Other best
practices

e Add files to .dockerignore.
e Avoid extra chown.
e Minimize system package installation.

e And more!

30/32

Recap

N

oo N v MW

. Get something working.

. Security.

. Running in CI.

. Make images easy to identify and debug.
. Improved operational correctness.

. Reproducible builds.

. Faster builds.

. Smaller images.

31/32

Thank you!

» Many of these best practices are covered in detail on
a free guide on my website.

» Get the slides, and links to the free guide and other
Python on Docker resources:

e Email: itamar@pythonspeed.com

o Twitter: (@itamarst

32/32

https://pythonspeed.com/europython2020/
mailto:itamar@pythonspeed.com
https://twitter.com/itamarst

