
Production-ready Docker
packaging for Python

Itamar Turner-Trauring

https://pythonspeed.com

� / ��

https://pythonspeed.com/

Why Docker packaging is
complicated

����s: Unix
����s: TCP/IP networking
����s: Python
����s: Linux cgroups
����s: Docker, modern Python packaging
����s: 😱😱😱

� / ��

The problem: too much to cover

� / ��

The problem: too much to cover
We only have �� minutes.

� / ��

The problem: too much to cover
We only have �� minutes.

Over �� packaging best practices.

� / ��

The problem: too much to cover
We only have �� minutes.

Over �� packaging best practices.

My training class takes �.� days.

� / ��

Today: learn a process
You have limited time at work, can get interrupted at
any moment.
Thus:

Iterative development.
Most important parts first.
Each step builds on previous steps.

Will give some examples best practices, and link to
resources at end of talk with far more details.

� / ��

An iterative process
�. Get something working.
�. Security.
�. Running in CI.
�. Make images easy to identify and debug.
�. Improved operational correctness.
�. Reproducible builds.
�. Faster builds.
�. Smaller images.

� / ��

�. Get something working
FROM python:3.8-slim-buster
COPY . .
RUN pip install .
ENTRYPOINT ["./run-server.sh"]

� / ��

�. Security
Before you can deploy anything publicly, it needs to
be secure.
So we do that next.

�� / ��

�. Security: Don't run as root
FROM python:3.8-slim-buster
RUN useradd --create-home appuser
USER appuser

WORKDIR /home/appuser
COPY . .
RUN pip install .
ENTRYPOINT ["./run-server.sh"]

�� / ��

�. Security: Other best practices
Run with reduced capabilities.
Make sure to install system package updates.
Organizational processes to update dependencies
when security fixes come out.
And more!

�� / ��

�. CI
You don't want to manually hand-build each image.
You want teammates to be able to build images.
So next step: integrate image building to your
build/CI system.

#!/bin/bash
set -euo pipefail

py.test
docker build -t yourimage:latest .
docker push yourimage:latest

�� / ��

�. CI: Tag based on branch
You want to build image for feature branch 123-
more-cowbell automatically.
You want production not to be impacted.

#!/bin/bash
set -euo pipefail

GIT_BRANCH=$(git rev-parse --abbrev-ref HEAD)

docker build -t "yourimage:$GIT_BRANCH" .
docker push "yourimage:$GIT_BRANCH"

�� / ��

�. CI: Other best practices
Once a week, rebuild without caching (--pull --
no-cache) and redeploy.
Run security scanners.
Warm up the build cache with docker pull to get
faster builds.
And more!

�� / ��

�. Make it debuggable
You've started automatically building and (probably)
deploying.
More likely to see errors.
Lots of images all over the place.
Next step: make images identifiable and easier to
debug.

�� / ��

�. Debuggable: Tracebacks on
crashes in C code

If you have a bug in Python code, you get a
traceback.
If you have a bug in C code, you get a silent crash...
...unless you enable Python's built-in faulthandler.

ENV PYTHONFAULTHANDLER=1
ENTRYPOINT ["python", "yourprogram.py"]

�� / ��

�. Debuggable: Other best
practices

Record build metadata in the image using Docker
labels.
Write a smoke test for the build.
Pre-install useful debugging tools.

�� / ��

�. Improve operational
correctness

Running in production, so you want to prevent
operational problems.
Correct and fast startup.
Fast shutdown.
Help the runtime environment correctly detect
frozen processes.

�� / ��

�. Operational correctness: Pre-
compile bytecode

Python compiles source code .pyc for faster startup.
If your image doesn't have .pyc, startup will be
slower.

Compile installed code:
RUN python -c "import compileall; \
 compileall.compile_path(maxlevels=10)"

Compile code in a directory:
RUN python -m compileall yourpackage/

�� / ��

�. Operational correctness:
Other best practices

Correct signal handling for shutdowns.
Handle zombie processes with init.
Health checks.
And more!

�� / ��

�. Reproducible builds
Over the course of two weeks, your major
dependencies won't change dramatically.
Over six months, some of them will.
Over two years, most of them will.
So next, you want reproducible builds so you can
update in a controlled manner.

�� / ��

�. Reproducible builds: Choose
a good base image

You'll want a Linux OS which does security updates
while still guaranteeing backwards compatibility, for
example Ubuntu LTS, Debian Stable, or CentOS.
The o�cial python images are based on Debian
Stable, but give access to newer (or older) Python.
python:3.8-slim-buster means "Python �.�, on
Debian Buster, the smaller version".

�� / ��

�. Reproducible builds: More
best practices

Pin Python package dependencies.
Set up an organizational process to update Python
dependencies.
Optionally, pin system package dependencies.
And more!

�� / ��

�. Faster builds
Your images are now packaged correctly, so now you
can focus on optimizations.
Starting point: your time is expensive, you don't
want to wait for builds.

�� / ��

�. Faster builds: Don't use
Alpine Linux

Alpine Linux is a small base image—but it can't use
precompiled wheels from PyPI.
As a result, you need to compile everything.
Example: install pandas and matplotlib.

python:3.8-slim-buster: �� seconds.
python:3.8-alpine: ���� seconds, ��× slower!

�� / ��

�. Faster builds: More best
practices

COPY in files only when needed
Like COPY, use ARG as late as possible.
Install dependencies separately from your code.

�� / ��

�. Smaller images
Final step is to make smaller images.
It's nice to be more e�cient, it can speed up test
runs and production startup, but usually not the first
thing to do.

�� / ��

�. Smaller images: Disable pip's
caching

By default pip keeps copies of the downloaded
package, in case you reinstall later.
This wastes space, and you won't need it.

RUN pip install --no-cache-dir -r requirements.txt

�� / ��

�. Smaller images: Other best
practices

Add files to .dockerignore.
Avoid extra chown.
Minimize system package installation.
And more!

�� / ��

Recap
�. Get something working.
�. Security.
�. Running in CI.
�. Make images easy to identify and debug.
�. Improved operational correctness.
�. Reproducible builds.
�. Faster builds.
�. Smaller images.

�� / ��

Thank you!
Many of these best practices are covered in detail on
a free guide on my website.
Get the slides, and links to the free guide and other
Python on Docker resources:
https://pythonspeed.com/europython����/
Email: itamar@pythonspeed.com
Twitter: @itamarst

�� / ��

https://pythonspeed.com/europython2020/
mailto:itamar@pythonspeed.com
https://twitter.com/itamarst

