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Seldon: OSS Production
ML Deployment
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The Institute for Ethical AI 
& Machine Learning
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We are part of the LFAI
@

AxSaucedo



Today

● Conceptual intro to stream processing

● Machine learning for real time

● Tradeoffs across tools

● Hands on use-case 
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Real Time Reddit Processing

● Real time ML model for reddit comments

● 200k comments for training model

● /r/science comments removed by mods

We will be fixing the front page 
of the internet
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A trip to the past present: ETL

E - Extract
T - Transform

L - Load
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Variations

● ETL - Extract Transform Load

● ELT - Extract Load Transform

● EL - Extract Load

● LT - Load Transform

● WTF - LOL
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Specialised Tools
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Nifi

Flume

EL

Oozie

Airflow

…

Jupyter notebook?

ETL

Elasticsearch

Data Warehouse

ELT
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Batch VS Streaming

The spectrum of data processing
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Batch VS AND Streaming

The right tool for the challenge
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Unifying Worlds

Massive drive on converging worlds
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Streaming Concepts: Windows

Processing of batches in real time
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Streaming Concepts: Checkpoints

Keeping track of stream progress
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Streaming Concepts: Watermarks

Considering 
data that 

comes late in 
windows and 

stream 
batches
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Some Stream Processing Tools

● Flink (Multiple Languages)

● Kafka Streams (Multiple Languages)

● Spark Stream (Multiple Languages)

● Faust (Python)

● Apache Beam (Python)
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Today we’re using

Stream Processing ML Serving ML Training
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Machine Learning Workflow
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Model Training

clean_text_transformer = CleanTextTransformer()

spacy_tokenizer = SpacyTokenTransformer()

tfidf_vectorizer = TfidfVectorizer(

    min_df=3,  

    max_features=1000,

    preprocessor=lambda x: x, tokenizer=lambda x: x, 

    token_pattern=None,

    ngram_range=(1, 3), use_idf=1, smooth_idf=1,

    sublinear_tf=1)

lr_model = LogisticRegression(C=1.0, verbose=True)

Clean Text

SpaCy Tokenizer

TFIDF Vectorizer

Logistic Regression
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Model Training
x_train_clean = \    

    clean_text_transformer.transform(x_train)

x_train_tokenized = \

    spacy_tokenizer.transform(x_train_clean)

tfidf_vectorizer.fit(

         x_train_tokenized[TOKEN_COLUMN].values)

x_train_tfidf = \

    tfidf_vectorizer.transform(

        x_train_tokenized[TOKEN_COLUMN].values)

lr_model.fit(x_train_tfidf, y_train)

pred = lr_model.predict(x_test_tfidf)

“You are dummy”

[ PRON, IS, DUMB ]

[ 1000, 0100, 0010 ]

[ 1 ]

“You are a DUMMY!!!!!”
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More on EDA & Model Evaluation

https://github.com/axsaucedo/reddit-classification-exploration/ 
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Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Overview of Components

Reddit Source

Stream processor

Processor:
fetch_stream

Processor:
ml_predict

              ML Service

seldon model
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Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Reddit Source

Stream processor

Processor:
fetch_stream

              ML Service

seldon model

Generating comments
@app.timer(0.1)

async def generate_reddit_comments():

reddit_sample = await fetch_reddit_comment()

reddit_data = {

        "id": reddit_sample["id"].values[0],

        "score": int(reddit_sample["score"].values[0]),

        ... # Cut down for simplicity

      }

await app.topic("reddit_stream").send( 

        key=reddit_data["id"],

        value=reddit_data)
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Reddit Source
Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Stream processor

Processor:
ml_predict

              ML Service

seldon model

ML Stream Processing Step
@app.agent(app.topic("reddit_stream"))

async def predict_reddit_content(tokenized_stream):

async for key, comment_extended in tokenized_stream.items():

    tokens = comment_extended["body_tokens"]

    probability = seldon_prediction_req(tokens)

    data = {

            "probability": probability,

             "original": comment_extended["body"]

    }

    await app.topic("reddit_prediction").send(

                key=key,

                value=data)

    if probability > MODERATION_THRESHOLD:

            await reddit_mod_alert_topic.send(

                        key=key,

                        value=data)
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Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

ML Model Request Step

Reddit Source

Stream processor

Processor:
fetch_stream

Processor:
ml_predict

              ML Service

seldon model

sc = SeldonClient(

      gateway_endpoint="istio-ingress.istio-system.svc.cluster.local",

      deploment_name="reddit-model",

      namespace="default")

def seldon_prediction_req(tokens):

data = np.array(tokens)

output = sc.predict(data=data)

return output.response["data"]["ndarray"]
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Overview of Seldon Model Serving
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Wrapping 
ML 

models 
for 

Serving 
with 

Seldon

import dill

from ml_utils import CleanTextTransformer, SpacyTokenTransformer

class RedditClassifier:

def __init__(self):  

        self._clean_text_transformer = CleanTextTransformer()

        self._spacy_tokenizer = SpacyTokenTransformer()

    

        with open('tfidf_vectorizer.model', 'rb') as model_file:

            self._tfidf_vectorizer = dill.load(model_file)

       

        with open('lr.model', 'rb') as model_file:

            self._lr_model = dill.load(model_file)

def predict(self, X, feature_names):

        clean_text = self._clean_text_transformer.transform(X)

        spacy_tokens = self._spacy_tokenizer.transform(clean_text)

        tfidf_features = self._tfidf_vectorizer.transform(spacy_tokens)

        predictions = self._lr_model.predict_proba(tfidf_features)

        return predictions
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Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Overview of Components

Reddit Source

Stream processor

Processor:
fetch_stream

Processor:
ml_predict

              ML Service

seldon model

@
AxSaucedo



Recap of Today

● Conceptual intro to stream processing

● Machine learning for real time

● Tradeoffs across tools

● Hands on use-case 
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