
EuroPython 2020
Real Time Machine Learning with Python

Alejandro Saucedo | as@seldon.io

Twitter: @AxSaucedo

@
AxSaucedo

mailto:a@ethical.institute
http://twitter.com/axsaucedo

my name is Alejandro

Alejandro Saucedo

Engineering Director
Seldon Technologies

Chief Scientist
The Institute for Ethical AI & ML

Head of Solutions Eng & Sci
Eigen Technologies

Software Engineer & DevX Lead
Bloomberg LP

Hello,
@

AxSaucedo

https://ethical.institute/

Seldon: OSS Production
ML Deployment

@
AxSaucedo

The Institute for Ethical AI
& Machine Learning

@
AxSaucedo

We are part of the LFAI
@

AxSaucedo

Today

● Conceptual intro to stream processing

● Machine learning for real time

● Tradeoffs across tools

● Hands on use-case

@
AxSaucedo

Real Time Reddit Processing

● Real time ML model for reddit comments

● 200k comments for training model

● /r/science comments removed by mods

We will be fixing the front page
of the internet

@
AxSaucedo

A trip to the past present: ETL

E - Extract
T - Transform

L - Load

@
AxSaucedo

Variations

● ETL - Extract Transform Load

● ELT - Extract Load Transform

● EL - Extract Load

● LT - Load Transform

● WTF - LOL

@
AxSaucedo

Specialised Tools
@

AxSaucedo

Nifi

Flume

EL

Oozie

Airflow

…

Jupyter notebook?

ETL

Elasticsearch

Data Warehouse

ELT

@
AxSaucedo

Batch VS Streaming

The spectrum of data processing

@
AxSaucedo

Batch VS AND Streaming

The right tool for the challenge

@
AxSaucedo

Unifying Worlds

Massive drive on converging worlds

@
AxSaucedo

Streaming Concepts: Windows

Processing of batches in real time

@
AxSaucedo

Streaming Concepts: Checkpoints

Keeping track of stream progress

@
AxSaucedo

Streaming Concepts: Watermarks

Considering
data that

comes late in
windows and

stream
batches

@
AxSaucedo

Some Stream Processing Tools

● Flink (Multiple Languages)

● Kafka Streams (Multiple Languages)

● Spark Stream (Multiple Languages)

● Faust (Python)

● Apache Beam (Python)

@
AxSaucedo

Today we’re using

Stream Processing ML Serving ML Training

@
AxSaucedo

Machine Learning Workflow
@

AxSaucedo

Model Training

clean_text_transformer = CleanTextTransformer()

spacy_tokenizer = SpacyTokenTransformer()

tfidf_vectorizer = TfidfVectorizer(

 min_df=3,

 max_features=1000,

 preprocessor=lambda x: x, tokenizer=lambda x: x,

 token_pattern=None,

 ngram_range=(1, 3), use_idf=1, smooth_idf=1,

 sublinear_tf=1)

lr_model = LogisticRegression(C=1.0, verbose=True)

Clean Text

SpaCy Tokenizer

TFIDF Vectorizer

Logistic Regression

@
AxSaucedo

Model Training
x_train_clean = \

 clean_text_transformer.transform(x_train)

x_train_tokenized = \

 spacy_tokenizer.transform(x_train_clean)

tfidf_vectorizer.fit(

 x_train_tokenized[TOKEN_COLUMN].values)

x_train_tfidf = \

 tfidf_vectorizer.transform(

 x_train_tokenized[TOKEN_COLUMN].values)

lr_model.fit(x_train_tfidf, y_train)

pred = lr_model.predict(x_test_tfidf)

“You are dummy”

[PRON, IS, DUMB]

[1000, 0100, 0010]

[1]

“You are a DUMMY!!!!!”
@

AxSaucedo

More on EDA & Model Evaluation

https://github.com/axsaucedo/reddit-classification-exploration/

@
AxSaucedo

https://github.com/axsaucedo/reddit-classification-exploration/

Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Overview of Components

Reddit Source

Stream processor

Processor:
fetch_stream

Processor:
ml_predict

 ML Service

seldon model

@
AxSaucedo

Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Reddit Source

Stream processor

Processor:
fetch_stream

 ML Service

seldon model

Generating comments
@app.timer(0.1)

async def generate_reddit_comments():

reddit_sample = await fetch_reddit_comment()

reddit_data = {

 "id": reddit_sample["id"].values[0],

 "score": int(reddit_sample["score"].values[0]),

 ... # Cut down for simplicity

 }

await app.topic("reddit_stream").send(

 key=reddit_data["id"],

 value=reddit_data)

@
AxSaucedo

Reddit Source
Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Stream processor

Processor:
ml_predict

 ML Service

seldon model

ML Stream Processing Step
@app.agent(app.topic("reddit_stream"))

async def predict_reddit_content(tokenized_stream):

async for key, comment_extended in tokenized_stream.items():

 tokens = comment_extended["body_tokens"]

 probability = seldon_prediction_req(tokens)

 data = {

 "probability": probability,

 "original": comment_extended["body"]

 }

 await app.topic("reddit_prediction").send(

 key=key,

 value=data)

 if probability > MODERATION_THRESHOLD:

 await reddit_mod_alert_topic.send(

 key=key,

 value=data)

@
AxSaucedo

Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

ML Model Request Step

Reddit Source

Stream processor

Processor:
fetch_stream

Processor:
ml_predict

 ML Service

seldon model

sc = SeldonClient(

 gateway_endpoint="istio-ingress.istio-system.svc.cluster.local",

 deploment_name="reddit-model",

 namespace="default")

def seldon_prediction_req(tokens):

data = np.array(tokens)

output = sc.predict(data=data)

return output.response["data"]["ndarray"]

@
AxSaucedo

Overview of Seldon Model Serving
@

AxSaucedo

Wrapping
ML

models
for

Serving
with

Seldon

import dill

from ml_utils import CleanTextTransformer, SpacyTokenTransformer

class RedditClassifier:

def __init__(self):

 self._clean_text_transformer = CleanTextTransformer()

 self._spacy_tokenizer = SpacyTokenTransformer()

 with open('tfidf_vectorizer.model', 'rb') as model_file:

 self._tfidf_vectorizer = dill.load(model_file)

 with open('lr.model', 'rb') as model_file:

 self._lr_model = dill.load(model_file)

def predict(self, X, feature_names):

 clean_text = self._clean_text_transformer.transform(X)

 spacy_tokens = self._spacy_tokenizer.transform(clean_text)

 tfidf_features = self._tfidf_vectorizer.transform(spacy_tokens)

 predictions = self._lr_model.predict_proba(tfidf_features)

 return predictions

@
AxSaucedo

Queue

Topic:
reddit_stream

Topic:
prediction

Topic:
alert

Overview of Components

Reddit Source

Stream processor

Processor:
fetch_stream

Processor:
ml_predict

 ML Service

seldon model

@
AxSaucedo

Recap of Today

● Conceptual intro to stream processing

● Machine learning for real time

● Tradeoffs across tools

● Hands on use-case

@
AxSaucedo

EuroPython 2020
Real Time Machine Learning with Python

Alejandro Saucedo | as@seldon.io

@AxSaucedo

mailto:a@ethical.institute
http://twitter.com/axsaucedo

