
Victoriya Fedotova, Frank Schlimbach

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

The Reality of “Data Centric Computing”

Software Challenges:

Performance
Limited

• Software is slow and single-node for many organizations
• Only sample a small portion of the data

Productivity
Limited

• More performant/scalable implementations require
significantly more development & deployment skills &
time

Compute
Limited

• Performance bottleneck often in compute, not
storage/memory

A typical data scientist analyzes only a small portion of data that they think has the most
potential of bringing the great insights. This means they may miss out on valuable insights from
the remaining bigger portion of the data — insights that may be crucial for the business.

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Productivity with Performance via Intel® Python*

Easy, out-of-the-box access to high performance Python

• Prebuilt accelerated solutions for data analytics, numerical computing, etc.

• Drop in replacement for your existing Python. No code changes required.

Intel® Distribution for Python*

mpi4py …

Learn More: software.intel.com/distribution-for-python

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Two Ingredients To Get Close-To-Native Performance in Python

Serial
Interpreted

Pure Python

Partially Ninja-level
Partially Interpreted

Python + Libraries

Largely Ninja-level
100% native

Libraries + JIT

100% Ninja-level
100% native

C++

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Data Analysis and Machine Learning

Data Input
Data

Preprocessing
Model

Creation
Prediction

Pandas
Spark
SDC

Scikit-learn
Spark
DL frameworks
daal4py

more nodes, more cores, more threads, wider vectors, …

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Accelerating Machine Learning

scikit-learn
➢Efficient memory
layout

➢Chunking for optimal
cache performance

➢Computations mapped
to most efficient matrix
operations (in MKL)

➢Parallelization via TBB

➢Vectorization

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks

(TBB)

Try it out! conda install –c intel scikit-learn

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Close to Native Scikit-learn Performance with Intel Python 2020
Compared to STOCK Python Packages on Intel® XEON Processors

P
e

rf
o

rm
a

n
ce

 e
ff

ic
ie

n
cy

 m
e

a
su

re
d

a

g
a

in
st

 n
a

ti
v

e
 c

o
d

e
 w

it
h

 In
te

l®
 D

A
A

L

Configuration: Testing by Intel as of November 27, 2019. Stock Python: Python 3.7.5 h_0371630_0 installed from conda, numpy 1.17.4, numba 0.46.0, llvmlite 0.30.0, scipy 1.3.2, scikit-learn 0.21.3 installed from pip; Intel Python: Intel® Distribution for Python* 2020
Gold: Python 3.7.4 hf484d3e_3, numpy 1.17.3 py37ha68da19_4, mkl 2020 intel_133, mkl_fft 1.0.15 py37ha68da19_3, mkl_random 1.1.0 py37ha68da19_0, numba 0.45.1 np117py37_1, llvmlite 0.29.0 py37hf484d3e_9, scipy 1.3.1 py37ha68da19_2, scikit-learn 0.21.3
py37ha68da19_14, daal 2020 intel_133, daal4py 2020 py37ha68da19_4; Cent OS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel Xeon® Platinum® 8280 CPU @ 2.70 GHz (2 sockets, 28 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16
GB@2666MHz.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations,
and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit https://www.intel.com/benchmarks
Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to
Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

https://software.intel.com/en-us/articles/optimization-notice/
https://www.intel.com/benchmarks
https://software.intel.com/sites/products/documentation/doclib/daal/daal-user-and-reference-guides/daal_cpp_api/opt_notice.htm

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Accelerating Scikit-learn through daal4py

Intel® DAAL

daal4py

Scikit-learn
Equivalents

Scikit-learn API
Compatible

> python –m daal4py <your-scikit-learn-script>

import daal4py.sklearn

daal4py.sklearn.patch_sklearn(‘kmeans’)

Monkey-patch any scikit-learn
on the command-line

Monkey-patch any scikit-learn
programmatically

Scikit-learn with daal4py patches applied passes Scikit-learn test-suite

PCA

KMeans

DBSCAN

LinearRegression

Ridge

SVC

pairwise_distances

logistic_regression_path

KNeighborsClassifier

RandomForestClassifier

RandomForestRegressor

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

daal4py

10

Scaling Machine Learning beyond A Single Node

scikit-learn

Intel® Data Analytics Acceleration Library
(DAAL)

Intel® Math Kernel
Library (MKL)

Intel® Threading
Building Blocks

(TBB)

Intel®
MPI

Simple Python API
Powers Scikit-learn

Powered by DAAL

Scalable to multiple
nodes

Open source

Try it out! conda install –c intel daal4py

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Scikit-learn

from sklearn.cluster import KMeans
import pandas as pd

data = pd.read_csv("./kmeans.csv")

algo = KMeans(n_clusters=20,
init='k-means++', max_iter=5)

result = algo.fit(data)

result.labels_
result.cluster_centers_

daal4py

from daal4py import kmeans_init, kmeans
import pandas as pd

data = pd.read_csv("./kmeans.csv")

init = kmeans_init(nClusters=20,
method="plusPlusDense").compute(data)

algo = kmeans(nClusters=20,
maxIterations=5, assignFlag=True)

result = algo.compute(data,
init.centroids)

result.assignments
result.centroids

K-Means Using Scikit-learn and DAAL4py

Load the data

Compute initial
centroids

Configure K-means
main object

Compute the
clusters and labels

Print the results

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Distributed K-Means Using DAAL4py
from daal4py import kmeans_init, kmeans, daalinit, daalfini, my_procid
import pandas as pd

Optionally initialize distributed execution environment
daalinit()

Load the data. Daal4py accepts data as CSV files, numpy arrays or pandas dataframes
data = pd.read_csv("./kmeans_dense_{}.csv".format(my_procid() + 1))

compute initial centroids
init_res = kmeans_init(nClusters=10, method=“plusPlusDense", distributed=True).compute(data)

configure kmeans main object: we also request the cluster assignments
algo = kmeans(nClusters=10, maxIterations=25, distributed=True)

compute the clusters/centroids
result = algo.compute(data, init_res.centroids)

daalfini()

mpirun –n 4 python kmeans_distributed.py

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

#include <mpi.h>
#include "daal.h"
#include "service.h"

using namespace std;
using namespace daal;
using namespace daal::algorithms;

typedef float algorithmFPType; /* Algorithm floating-point type */

/* Input data set parameters */
const size_t nBlocks = 4;
size_t nFeatures;

int rankId, comm_size;
#define mpi_root 0

const string fileNames[] = { "./pca_1.csv", "./pca_2.csv", "./pca_3.csv", "./pca_4.csv" };

int main(int argc, char * argv[])
{

checkArguments(argc, argv, 4, &fileNames[0], &fileNames[1], &fileNames[2], &fileNames[3]);

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &comm_size);
MPI_Comm_rank(MPI_COMM_WORLD, &rankId);

/* Initialize FileDataSource<CSVFeatureManager> to retrieve the input data from a .csv file */
FileDataSource<CSVFeatureManager> dataSource(datasetFileNames[rankId], DataSource::doAllocateNumericTable, Dat

aSource::doDictionaryFromContext);

/* Retrieve the input data */
dataSource.loadDataBlock();

/* Create an algorithm for principal component analysis using the SVD method on local nodes */
pca::Distributed<step1Local, algorithmFPType, pca::svdDense> localAlgorithm;

/* Set the input data set to the algorithm */
localAlgorithm.input.set(pca::data, dataSource.getNumericTable());

/* Compute PCA decomposition */
localAlgorithm.compute();

/* Serialize partial results required by step 2 */
services::SharedPtr<byte> serializedData;
InputDataArchive dataArch;
localAlgorithm.getPartialResult()->serialize(dataArch);
size_t perNodeArchLength = dataArch.getSizeOfArchive();

/* Serialized data is of equal size on each node if each node called compute() equal number of times */
if (rankId == mpi_root)
{

serializedData = services::SharedPtr<byte>(new byte[perNodeArchLength * nBlocks]);
}

byte * nodeResults = new byte[perNodeArchLength];
dataArch.copyArchiveToArray(nodeResults, perNodeArchLength);

/* Transfer partial results to step 2 on the root node */
MPI_Gather(nodeResults, perNodeArchLength, MPI_CHAR, serializedData.get(), perNodeArchLength, MPI_CHAR, mpi_root, MPI_COMM_WORLD);

delete[] nodeResults;

if (rankId == mpi_root)
{

/* Create an algorithm for principal component analysis using the SVD method on the master node */
pca::Distributed<step2Master, algorithmFPType, pca::svdDense> masterAlgorithm;

for (size_t i = 0; i < nBlocks; i++)
{

/* Deserialize partial results from step 1 */
OutputDataArchive dataArch(serializedData.get() + perNodeArchLength * i, perNodeArchLength);

services::SharedPtr<pca::PartialResult<pca::svdDense> > dataForStep2FromStep1 =
services::SharedPtr<pca::PartialResult<pca::svdDense> >(new pca::PartialResult<pca::svdDense>());

dataForStep2FromStep1->deserialize(dataArch);

/* Set local partial results as input for the master-node algorithm */
masterAlgorithm.input.add(pca::partialResults, dataForStep2FromStep1);

}

/* Merge and finalizeCompute PCA decomposition on the master node */
masterAlgorithm.compute();
masterAlgorithm.finalizeCompute();

/* Retrieve the algorithm results */
pca::ResultPtr result = masterAlgorithm.getResult();

/* Print the results */
printNumericTable(result->get(pca::eigenvalues), "Eigenvalues:");
printNumericTable(result->get(pca::eigenvectors), "Eigenvectors:");

}

MPI_Finalize();

return 0;
}

DAAL4PY API Generation

Semi-automatic API generation process:
• Parse C++ headers to generate Cython code
• Use jinja2 to generate Python classes for algorithms, models,

results, etc

100X fewer LOC for multi-node algorithms

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Memory layout: Homogeneous

Memory layout: Structure-of-Arrays (SOA)

14

Python data type

• numpy.ndarray

• Homogeneous dense array

• pandas.DataFrame

• Heterogeneous data

DAAL data type

Effective Data Transfer: Python ↔ Native

Feature 1

Sample 1

Feature p-1

Feature p

Feature 2

Sample 2 Sample n

…

…

daal4py mostly avoids data copies and
works optimally with various data layouts

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Strong and Weak Scaling via DAAL4py

On a 32-node cluster
(1280 cores) daal4py
computed K-Means (10
clusters) of 1.12 TB of data
in 107.4 seconds and
35.76 GB of data in 4.8
seconds.

Configuration: Intel® Xeon® Gold
6148 CPU @ 2.40GHz, EIST/Turbo
on 2 sockets, 20 cores per socket,
192 GB RAM, 16 nodes connected
with Infiniband, Oracle Linux Server
release 7.4, using 64-bit floating
point numbers

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Intel® Scalable Dataframe Compiler (SDC)
evolved from High-Performance Analytics Toolkit (HPAT)

It's a compiler
A just-in-time compiler

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Compilation pipeline (high-level view)

vucomisd %xmm0, %xmm0

setnp %dl

jp .LBB0_11

vaddsd %xmm0, %xmm2, %xmm2

.LBB0_11:

vaddsd %xmm0, %xmm3, %xmm1

vcmpunordsd %xmm0, %xmm0, %xmm0

vblendvpd %xmm0, %xmm3, %xmm1,

@hpat.jit

def get_stats():

…

df[‘latency'].sum()

df[‘latency'].mean()

…

Decorator
@numba.jit

Type
Analysis

Parallel
Analysis

Compile
Efficient
binary

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Basic Workflow Example

import numpy as np
import pandas as pd
from numba import njit

This function gets compiled by Numba*
@njit
def get_analyzed_data(file_name):

df = pd.read_csv(file_name,
dtype={'Bonus %': np.float64, 'First Name': str},
usecols=['Bonus %', 'First Name’])

s_bonus = pd.Series(df['Bonus %’])
s_first_name = pd.Series(df['First Name’])
m = s_bonus.mean()
names = s_first_name.sort_values()
return m, names

mean_bonus, sorted_first_names = get_analyzed_data(‘employees.csv’)
print(sorted_first_names)
print('Average Bonus %:', mean_bonus)

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Intel® SDC and Numba* Limitation: Type Stability

Input code to SDC must be statically compilable (type stable)

• Dynamically typed code examples (rare in analytics):

Untypable variable Unresolvable function Nonstatic DataFrame schema

if flag1:
a = 2

else:
a = np.ones(n)

if isinstance(a,
np.ndarray):

doWork(a)

if flag2:
f = np.zeros

else:
f = np.ones

b = f(m)

if flag3:
df = pd.DataFrame({‘A’:

[1,2,3]})
else:

df = pd.DataFrame({‘A’:
[‘a’, ‘b’, ‘c’]})

b = f(m)

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Getting Performance with Intel® SDC

• Compile parts of code
where parallelism
resides

• Compile functions that
are called multiple
times

• Minimize number of
columns in dataframes
in the regions being
compiled

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel SDC Performance – read_csv

0.7

2.5

8.9

10.7

0.0

2.0

4.0

6.0

8.0

10.0

12.0

1 thread 4 threads 28 threads 56 threads

INPUT/OUTPUT OPERATIONS
S P E E D U P S D C V S . P A N D A S

read_csv

Intel® SDC Beta, Numba* 0.48, Pandas* 0.25.3
Intel® Xeon™ Platinum 8280L, 2.7 GHz, 2x28 cores, Hyperthreading=on, Turbo Mode=on

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel SDC Performance – Dataframes

2.7 5.3

20.7

38.1

1.8 3.6
12.1 11.511

22

115
120

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

1 thread 4 threads 28 threads 56 threads

DATAFRAME OPERATIONS
S P E E D U P S D C V S . P A N D A S

count drop max (skipna=True)

2
3

14

8

1.8 1.9 2.0 2.72

9

25

35

0

5

10

15

20

25

30

35

40

1 thread 4 threads 28 threads 56 threads

D A T A F R A M E R O L L I N G W I N D O W S O P E R A T I O N S
S P E E D U P S D C V S . P A N D A S

kurt mean std

Intel® SDC Beta, Numba* 0.48, Pandas* 0.25.3
Intel® Xeon™ Platinum 8280L, 2.7 GHz, 2x28 cores, Hyperthreading=on, Turbo Mode=on

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel SDC Performance – Series

50

109

428
464

8 12

82

148

1.6 2.8 12.4 14.1

0

50

100

150

200

250

300

350

400

450

500

1 thread 4 threads 28 threads 56 threads

SERIES OPERATIONS
S P E E D U P S D C V S . P A N D A S

apply(lambda x: x) corr cumsum(skipna=True)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

1 thread 4 threads 28 threads 56 threads

S E R I E S R O L L I N G W I N D O W S O P E R A T I O N S

S P E E D U P S D C V S . P A N D A S

corr count skew

Intel® SDC Beta, Numba* 0.48, Pandas* 0.25.3
Intel® Xeon™ Platinum 8280L, 2.7 GHz, 2x28 cores, Hyperthreading=on, Turbo Mode=on

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Intel® SDC Functionality

Operations

• Python/Numpy/Pandas* basics
• Statistical operations (max, std, median, …)
• Relational operations (filter, groupby)
• Rolling window (rolling)

Data

• Missing value
• Dates
• ASCII/Unicode strings
• Data-Frames, Series, Lists, Dictionaries, Tuples

Interoperability • I/O integration (CSV)

Coming soon: time series and categoricals

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Open source project

• https://github.com/IntelPython/sdc

• https://intelpython.github.io/sdc-doc/latest/index.html

In Beta till end of 2020

Available as conda packages and pip wheels (Python 3.6/3.7, Windows/Linux)
▪ conda install -c intel/label/beta sdc

▪ pip install -i https://pypi.anaconda.org/intel/label/beta/simple sdc

Intel® Scalable Dataframe Compiler (SDC)
evolved from High-Performance Analytics Toolkit (HPAT)

https://software.intel.com/en-us/articles/optimization-notice/
https://github.com/IntelPython/sdc
https://intelpython.github.io/sdc-doc/latest/index.html

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

What's next?

More Pandas features

Auto-scale-out to clusters of workstations

Compiling to and running on GPUS/accelerators

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Compiling to and running on GPUS/accelerators

1
2

with device_context(gpu, 0):
black_scholes(SP, S, R, V, T)

https://software.intel.com/en-us/articles/optimization-notice/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

End-to-end performance of analytics

daal4py and SDC help accelerate, scale-up and
scale-out the entire analytics process in Python
from preprocessing through machine learning

• https://anaconda.org/intel
• https://software.intel.com/distribution-for-python
• https://intelpython.github.io/daal4py
• https://github.com/IntelPython/sdc
• https://medium.com/intel-analytics-software

https://software.intel.com/en-us/articles/optimization-notice/
https://anaconda.org/intel
https://software.intel.com/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelPython/sdc
https://medium.com/intel-analytics-software

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Legal Disclaimer & Optimization Notice
Performance results are based on testing as of November 27, 2019, May 18, 2020 and may not reflect all publicly available security updates.
See configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2020, Intel Corporation. All rights reserved. Intel, Xeon, Core, and the Intel logo are trademarks of Intel Corporation in the U.S. and
other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

https://software.intel.com/en-us/articles/optimization-notice/
https://software.intel.com/en-us/articles/optimization-notice

