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About us
● Lidi Zheng

○ Software Engineer at Google
○ Maintainer of gRPC Python

● Pau Freixes
○ Former Senior Software Engineer at Skyscanner
○ Currently at Onna.com (we are hiring!)
○ Python enthusiast, but definitely what likes most is solve problems.
○ Open source contributor: Aiohttp, emcache, etc



What is gRPC?
● RPC framework upon HTTP/2
● Fast, light-weight and feature rich:

○ Bi-directional streaming RPC
○ Client-side/Look-aside load balancing
○ Interceptors
○ ProtoBuf
○ ...

● ~400k downloads / day (grpcio)

GitHub ⭐: 26.8k
Contributors: 572



Core and Python
● Python is a wrapper over Core
● 14 supported languages
● Benefits:

○ Better performance
○ Lower maintenance burden

● Frictions:
○ Segfaults
○ Memory leaks
○ Compilation



What’s Python C Extension?
● Module written in C/C++
● Python.h
● Complex to write:

○ Version compatibility
○ Lot’s of boilerplate

● Why?
○ Integration
○ Performance

#include <Python.h>

static PyObject* hello_world(PyObject* self, PyObject* args) {
    printf("Hello World\n");
    return Py_None;
}

static PyMethodDef methods[] = {
    { "hello_world", hello_world, METH_NOARGS, "Prints hello world."},
    { NULL, NULL, 0, NULL }
};

static struct PyModuleDef hello_world_module = {
    PyModuleDef_HEAD_INIT,
    "hello_world_module",
    "Test Module",
    -1,
    methods
};

PyMODINIT_FUNC PyInit_hello_world_module(void) {
    return PyModule_Create(&hello_world_module);
}



● Module written in C/C++
● Python.h
● Complex to write:

○ Version compatibility
○ Lot’s of boilerplate

● Why?
○ Integration
○ Performance

What’s Python C Extension?

C/C++ Library

Glue Code

Python AppPython.h Better C++ Framework

Glue Code Generator



Popular Gluing Approaches

Approach Pros Cons

Pyclif Straightforward template syntax Needs to learn the templating 
language; more glue logic in C++

Pybind11 Portable, lightweight, header-only. Requires to code in C++ (might be 
a plus for C++ fans)

Cython Ease to develop (adopted by 
NumPy and SciPy).

Language itself is a “superset” of 
Python

Other options: Ctypes, CFFI, SWIG, Boost.python



Cython in a Nutshell

import math

def am_i_prime(x: int) -> bool:
    for i in range(2, math.floor(math.sqrt(x))):
        if x % i == 0:
            return False
    return True

from libc.math cimport sqrt, floor

cdef am_i_prime(int x):
    cdef double root = sqrt(<double>x)
    for i in range(2, <int>floor(root)):
        if x % i == 0:
            return False
    return True

4000+ lines C file

[Read More] https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

compile compile prime_checker.so

import prime_checker

print(prime_checker.am_i_prime(2**31-1))prime_checker.py

prime_checker.pyx

import

import

https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html


Python & gdb

[Read More] https://wiki.python.org/moin/DebuggingWithGdb

lidi@dev:grpc$ gdb python3.7
(gdb) source /users/lidi/src/Python-3.7.0/python-gdb.py
(gdb) run _channel_ready_future_test.py
...
^C
Thread 1 "python" received signal SIGINT, Interrupt.
(gdb) py-bt
Traceback (most recent call first):
  File "/usr/local/lib/python3.7/threading.py", line 300, in wait
    gotit = waiter.acquire(True, timeout)
...
  File "src/python/grpcio_tests/tests/unit/_channel_ready_future_test.py", line 97, in <module>
    unittest.main(verbosity=2)
(gdb) py-list
 299    if timeout > 0:
>300        gotit = waiter.acquire(True, timeout)
 301    else:
(gdb) print __pyx_v_self

$1 = <grpc._cython.cygrpc.CompletionQueue at remote 0x7ffff360fd50>

(gdb) bt

#22 0x000055555568416a in PyEval_EvalFrameEx (throwflag=0,

    f=Frame 0x555555fa5888, for file /usr/local/lib/python3.7/unittest/case.py, line 615...

https://wiki.python.org/moin/DebuggingWithGdb
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[Read More] https://wiki.python.org/moin/GlobalInterpreterLock

https://wiki.python.org/moin/GlobalInterpreterLock


gRPC and Asyncio



Not blocking the loop, what a headache

event = grpc_completion_queue_next(completion_queue, 1s)

response = await stub.call(request)



Not blocking the loop, what a headache
● gRPC C++ interface provided a way of installing custom IO managers

○ read, write, etc ...

● But the interface for polling gRPC events was still blocking 
○ For Asyncio this was a no go.

● Other frameworks had a similar problem but managed to solve the issue
○ Gevent, by just providing its custom IO manager
○ Node.js, implicit cooperation by using same libuv loop instance behind the scenes



Not blocking the loop, what a headache
● … and gRPC C++ introduced a new completion queue based on callbacks

○ Was orginally developed for having fully asynchronous C++ implementations

● Instead of making blocking calls a callback would tell you when a gRPC event 
would be avaialable.

○ This allowed us to return the control to the loop for Asyncio.

● Eureka!!!



Solution 1, our own IO manager implementation
Our first implementation looked promising, based on

● implementing our own custom IO manager 
● using the callback completion queue



Making sync stack compatible with async



Sync and Async compatibility
● Synchronous stack was still there, and it will be there for a long time
● Sync and Async coexistence was a must

○ An async server might use a library which behind the scenes might use the synchronous 
version of gRPC

● How the hell this could be addressed?



Sync and Async compatibility
● Rewriting the whole sync stack on top of the async one

○ Could end up blocking the loop in anyway
○ Forced to us to rewrite a large amount of code

● Modifying the gRPC C++ implementation for allowing to have multiple IO 
managers running at the same time.

○ Implied many changes in the core of the gRPC which could affect other languages

● Run all gRPC IO events in a separated Asyncio thread
○ Allowed to us block the current loop (main thread)
○ The amount of changes needed was affordable
○ Doubts about how performance might be affected



Sync and Async compatibility

It worked but had a very negative impact in the performance



Solution 2, poller thread



Solution 2, poller thread implementation
- Discard the usage of the callback completion queue
- Discard the usage of an ad-hoc IO manager
- gRPC Asyncio Python application would start a separated thread for polling 

gRPC events
- This thread won’t use any Python object, during the polling

- Avoid GIL contention

- Events would be added into a C++ queue
- Asyncio loop will be woken up by writing into a socket

- Again not using any Python objects at all



Solution 2, poller thread implementation
The solution had really good benefits

- Remove the burden of having to maintain a new IO manager
- Any little detail implemented by the C++ gRPC IO manager will be there

- Unix sockets
- etc.

- Performance degradation affordable, still a nice boost compared to the 
synchronous stack.

- Eureka!



Solution 2, poller thread implementation



Thanks!!! QA


