gRPC Python,
C Extensions,
and AsynclO

Discord channel: #talk-grpc-and-asyncio

About us

e Lidi Zheng

o Software Engineer at Google
o Maintainer of gRPC Python

e Pau Freixes
o Former Senior Software Engineer at Skyscanner
o Currently at Onna.com (we are hiring!)
o Python enthusiast, but definitely what likes most is solve problems.
o Open source contributor: Aiohttp, emcache, etc

What is gRPC?

e RPC framework upon HTTP/2

e Fast, light-weight and feature rich:
o Bi-directional streaming RPC
o Client-side/Look-aside load balancing
o Interceptors
o ProtoBuf

o

e ~400k downloads / day (grpcio)

GitHub ;’}: 26.8k
Contributors: 572

Core and Python

e Python is a wrapper over Core
e 14 supported languages

e Benefits:

o Better performance

o Lower maintenance burden
e Frictions:

o Segfaults

o Memory leaks

o Compilation

Language Idiomatic APIs

C++

Python

Node

c#

PHP || Ruby

Obj-C

grpc-java

grpc-go

Java

Go

What's Python C Extension?

#include <Python.h>

e Module written in C/C++
static PyObject* hello_world(PyObject* self, PyObject* args) {

e Python.h printf("Hello World\n");
] return Py_None;
e Complex to write: }
o Version compatibility static PyMethodDef methods[] = {
Lot f boil lat { "hello_world", hello_world, METH_NOARGS, "Prints hello world."},
© Ot's of bollerplate { NULL, NULL, @, NULL }
e Why? b
o Integratkn1 static struct PyModuleDef hello_world_module = {
PyModuleDef_HEAD_INIT,
o Performance "hello_world_module",
"Test Module",
_‘I'
methods
s

PyMODINIT_FUNC PyInit_hello_world_module(void) {
return PyModule_Create(&hello_world_module);
}

What's Python C Extension?

e Module written in C/C++
Python.h
Complex to write:

o Version compatibility Python.h {
o Lot’s of boilerplate Glue Code
o Why?

o Integration
o Performance

Better C++ Framework

Glue Code Generator

Popular Gluing Approaches

Approach Pros Cons
Pyclif Straightforward template syntax Needs to learn the templating
language; more glue logic in C++
Pybind11 Portable, lightweight, header-only. | Requires to code in C++ (might be
a plus for C++ fans)
Cython Ease to develop (adopted by Language itself is a “superset” of
NumPy and SciPy). Python

Other options: Ctypes, CFFI, SWIG, Boost.python

Cython in a Nutshell

__

import math

i def am_i_prime(x: int) -> bool:

| for i in range(2, math.floor(math.sqrt(x))):

| if x % i == 0:

i return False

' return True
e prime_checker.py ---

print(prime_checker.am_i_prime(2**31-1))

' import prime_checker i

cdef am_i_prime(int x):

| cdef double root = sart(<doublex) [compie > | 4000+ lines C file prime_checker.so
: for i in range(2, <int>floor(root)): | -

if x % i ==
return False
return True

————————————————————————————— prime_checker.pyx ---

[Read More] https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

Python & gdb

lidi@dev:grpc$ gdb python3.7
(gdb) source /users/lidi/src/Python-3.7.0/python-gdb.py
(gdb) run _channel_ready_future_test.py

Ac

Thread 1 "python" received signal SIGINT, Interrupt.
(gdb) py-bt

Traceback (most recent call first):
File "/usr/local/lib/python3.7/threading.py", line 300, in wait
gotit = waiter.acquire(True, timeout)

File "src/python/grpcio_tests/tests/unit/_channel_ready_future_test.py", line 97, in <module>
unittest.main(verbosity=2)
(gdb) py-list
299 if timeout > 0:
>300 gotit = waiter.acquire(True, timeout)
301 else:
(gdb) print __pyx_v_self

81 = <grpc._cython.cygrpc.CompletionQueue at remote @x7ffff360fd50>
(gdb) bt
#22 0x000055555568416a in PyEval_EvalFrameEx (throwflag=0,
f=Frame 0x555555fa5888, for file /usr/local/lib/python3.7/unittest/case.py, line 615...

[Read More] https://wiki.python.org/moin/DebuggingWithGdb

https://wiki.python.org/moin/DebuggingWithGdb

Thread

- POSIX Thread

\\\\\\\\\\\\\
AR
v, 00,0
00
AR
— \\\\\\\
17,07,
e \“\\\\\\\
‘4,
AR
S
14,5
"y ST s s 1
O wrne ! 1
wrus
utur “
©
@ i
= -
|
o LIS |
X o |
C Qe
- — m “
NM 1
1
a / “||||||||l_
\
\
() ,
\
\
| - R
C :
\
\
T *
\
\
\
\
O ,
\
\
\
I //
C O
1
- Sl a o
> o & o)
(7)) = < ©)
< O O
2 A o
I - 4
Ol o
- 2 >
O i
| e e e e e e e e

[Read More] https://wiki.python.org/moin/Globalinterpreterl ock

https://wiki.python.org/moin/GlobalInterpreterLock

gRPC and Asyncio

Not blocking the loop, what a headache

{ response = await stub.call(request) }

Y

Not blocking the loop, what a headache

e (gRPC C++ interface provided a way of installing custom IO managers
o read, write, etc ...
e But the interface for polling gRPC events was still blocking
o For Asyncio this was a no go.
e Other frameworks had a similar problem but managed to solve the issue

o Gevent, by just providing its custom IO manager
o Node.js, implicit cooperation by using same libuv loop instance behind the scenes

Not blocking the loop, what a headache

e ... and gRPC C++ introduced a new completion queue based on callbacks
o Was orginally developed for having fully asynchronous C++ implementations

e Instead of making blocking calls a callback would tell you when a gRPC event

would be avaialable.
o This allowed us to return the control to the loop for Asyncio.

e Eurekalll

Solution 1, our own |O manager implementation

Our first implementation looked promising, based on

e implementing our own custom IO manager
e using the callback completion queue

QPS unary sync vs async stack

Making sync stack compatible with async

Sync and Async compatibility

e Synchronous stack was still there, and it will be there for a long time

e Sync and Async coexistence was a must
o An async server might use a library which behind the scenes might use the synchronous
version of gRPC

e How the hell this could be addressed?

Sync and Async compatibility

e Rewriting the whole sync stack on top of the async one
o Could end up blocking the loop in anyway
o Forced to us to rewrite a large amount of code

e Modifying the gRPC C++ implementation for allowing to have multiple 10

managers running at the same time.
o Implied many changes in the core of the gRPC which could affect other languages

e Run all gRPC IO events in a separated Asyncio thread
o Allowed to us block the current loop (main thread)
o The amount of changes needed was affordable
o Doubts about how performance might be affected

Sync and Async compatibility

It worked but had a very negative impact in the performance

QPS unary sync/async/async with thread loop

B sync
B Async

Async thread loop

Client

Solution 2, poller thread

Solution 2, poller thread implementation

- Discard the usage of the callback completion queue

- Discard the usage of an ad-hoc 10 manager

- gRPC Asyncio Python application would start a separated thread for polling
gRPC events

- This thread won'’t use any Python object, during the polling

Avoid GIL contention
- Events would be added into a C++ queue

- Asyncio loop will be woken up by writing into a socket
Again not using any Python objects at all

Solution 2, poller thread implementation

The solution had really good benefits

Remove the burden of having to maintain a new |O manager
Any little detail implemented by the C++ gRPC IO manager will be there

Unix sockets
etc.

Performance degradation affordable, still a nice boost compared to the
synchronous stack.
Eureka!

Solution 2, poller thread implementation

QPS unary sync/async/async-thread-poller

B sync
B async

async poller thread

client server

Thanks!!! QA

