
gRPC Python,
C Extensions,
and AsyncIO
Discord channel: #talk-grpc-and-asyncio

About us
● Lidi Zheng

○ Software Engineer at Google
○ Maintainer of gRPC Python

● Pau Freixes
○ Former Senior Software Engineer at Skyscanner
○ Currently at Onna.com (we are hiring!)
○ Python enthusiast, but definitely what likes most is solve problems.
○ Open source contributor: Aiohttp, emcache, etc

What is gRPC?
● RPC framework upon HTTP/2
● Fast, light-weight and feature rich:

○ Bi-directional streaming RPC
○ Client-side/Look-aside load balancing
○ Interceptors
○ ProtoBuf
○ ...

● ~400k downloads / day (grpcio)

GitHub ⭐: 26.8k
Contributors: 572

Core and Python
● Python is a wrapper over Core
● 14 supported languages
● Benefits:

○ Better performance
○ Lower maintenance burden

● Frictions:
○ Segfaults
○ Memory leaks
○ Compilation

What’s Python C Extension?
● Module written in C/C++
● Python.h
● Complex to write:

○ Version compatibility
○ Lot’s of boilerplate

● Why?
○ Integration
○ Performance

#include <Python.h>

static PyObject* hello_world(PyObject* self, PyObject* args) {
 printf("Hello World\n");
 return Py_None;
}

static PyMethodDef methods[] = {
 { "hello_world", hello_world, METH_NOARGS, "Prints hello world."},
 { NULL, NULL, 0, NULL }
};

static struct PyModuleDef hello_world_module = {
 PyModuleDef_HEAD_INIT,
 "hello_world_module",
 "Test Module",
 -1,
 methods
};

PyMODINIT_FUNC PyInit_hello_world_module(void) {
 return PyModule_Create(&hello_world_module);
}

● Module written in C/C++
● Python.h
● Complex to write:

○ Version compatibility
○ Lot’s of boilerplate

● Why?
○ Integration
○ Performance

What’s Python C Extension?

C/C++ Library

Glue Code

Python AppPython.h Better C++ Framework

Glue Code Generator

Popular Gluing Approaches

Approach Pros Cons

Pyclif Straightforward template syntax Needs to learn the templating
language; more glue logic in C++

Pybind11 Portable, lightweight, header-only. Requires to code in C++ (might be
a plus for C++ fans)

Cython Ease to develop (adopted by
NumPy and SciPy).

Language itself is a “superset” of
Python

Other options: Ctypes, CFFI, SWIG, Boost.python

Cython in a Nutshell

import math

def am_i_prime(x: int) -> bool:
 for i in range(2, math.floor(math.sqrt(x))):
 if x % i == 0:
 return False
 return True

from libc.math cimport sqrt, floor

cdef am_i_prime(int x):
 cdef double root = sqrt(<double>x)
 for i in range(2, <int>floor(root)):
 if x % i == 0:
 return False
 return True

4000+ lines C file

[Read More] https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

compile compile prime_checker.so

import prime_checker

print(prime_checker.am_i_prime(2**31-1))prime_checker.py

prime_checker.pyx

import

import

https://cython.readthedocs.io/en/latest/src/tutorial/cython_tutorial.html

Python & gdb

[Read More] https://wiki.python.org/moin/DebuggingWithGdb

lidi@dev:grpc$ gdb python3.7
(gdb) source /users/lidi/src/Python-3.7.0/python-gdb.py
(gdb) run _channel_ready_future_test.py
...
^C
Thread 1 "python" received signal SIGINT, Interrupt.
(gdb) py-bt
Traceback (most recent call first):
 File "/usr/local/lib/python3.7/threading.py", line 300, in wait
 gotit = waiter.acquire(True, timeout)
...
 File "src/python/grpcio_tests/tests/unit/_channel_ready_future_test.py", line 97, in <module>
 unittest.main(verbosity=2)
(gdb) py-list
 299 if timeout > 0:
>300 gotit = waiter.acquire(True, timeout)
 301 else:
(gdb) print __pyx_v_self

$1 = <grpc._cython.cygrpc.CompletionQueue at remote 0x7ffff360fd50>

(gdb) bt

#22 0x000055555568416a in PyEval_EvalFrameEx (throwflag=0,

 f=Frame 0x555555fa5888, for file /usr/local/lib/python3.7/unittest/case.py, line 615...

https://wiki.python.org/moin/DebuggingWithGdb

POSIX Thread

Executor
Thread

Non-AsyncIO Threading Model

gRPC App

gRPC Core

POSIX Thread

POSIX Thread

Polling
POSIX Thread

Executor
Thread

POSIX Thread

Executor
Thread

POSIX Thread

Executor
Thread

POSIX Thread

Executor
Thread

POSIX Thread

Executor
Thread

POSIX Thread

Executor
Thread

POSIX Thread

Executor
Thread

GIL

[Read More] https://wiki.python.org/moin/GlobalInterpreterLock

https://wiki.python.org/moin/GlobalInterpreterLock

gRPC and Asyncio

Not blocking the loop, what a headache

event = grpc_completion_queue_next(completion_queue, 1s)

response = await stub.call(request)

Not blocking the loop, what a headache
● gRPC C++ interface provided a way of installing custom IO managers

○ read, write, etc ...

● But the interface for polling gRPC events was still blocking
○ For Asyncio this was a no go.

● Other frameworks had a similar problem but managed to solve the issue
○ Gevent, by just providing its custom IO manager
○ Node.js, implicit cooperation by using same libuv loop instance behind the scenes

Not blocking the loop, what a headache
● … and gRPC C++ introduced a new completion queue based on callbacks

○ Was orginally developed for having fully asynchronous C++ implementations

● Instead of making blocking calls a callback would tell you when a gRPC event
would be avaialable.

○ This allowed us to return the control to the loop for Asyncio.

● Eureka!!!

Solution 1, our own IO manager implementation
Our first implementation looked promising, based on

● implementing our own custom IO manager
● using the callback completion queue

Making sync stack compatible with async

Sync and Async compatibility
● Synchronous stack was still there, and it will be there for a long time
● Sync and Async coexistence was a must

○ An async server might use a library which behind the scenes might use the synchronous
version of gRPC

● How the hell this could be addressed?

Sync and Async compatibility
● Rewriting the whole sync stack on top of the async one

○ Could end up blocking the loop in anyway
○ Forced to us to rewrite a large amount of code

● Modifying the gRPC C++ implementation for allowing to have multiple IO
managers running at the same time.

○ Implied many changes in the core of the gRPC which could affect other languages

● Run all gRPC IO events in a separated Asyncio thread
○ Allowed to us block the current loop (main thread)
○ The amount of changes needed was affordable
○ Doubts about how performance might be affected

Sync and Async compatibility

It worked but had a very negative impact in the performance

Solution 2, poller thread

Solution 2, poller thread implementation
- Discard the usage of the callback completion queue
- Discard the usage of an ad-hoc IO manager
- gRPC Asyncio Python application would start a separated thread for polling

gRPC events
- This thread won’t use any Python object, during the polling

- Avoid GIL contention

- Events would be added into a C++ queue
- Asyncio loop will be woken up by writing into a socket

- Again not using any Python objects at all

Solution 2, poller thread implementation
The solution had really good benefits

- Remove the burden of having to maintain a new IO manager
- Any little detail implemented by the C++ gRPC IO manager will be there

- Unix sockets
- etc.

- Performance degradation affordable, still a nice boost compared to the
synchronous stack.

- Eureka!

Solution 2, poller thread implementation

Thanks!!! QA

