
Flasync Await
David Bordeynik

Software Architect
@ Nvidia

EuroPython 2020

● This session IS a mind opener on how to provide added value with minimal
effort.

● This session IS NOT about saying X is a bad technology and Y is a good
technology.

● Assuming knowledge in web development and REST APIs in particular.

Setting up expectations

Motivation

3-4x

Motivation - cont.

3-4x

● simplejson is installed as an optional dependency for flask.
● ab is used for benchmarking.

Notes on the motivation experiment

https://flask.palletsprojects.com/en/1.1.x/api/?highlight=simplejson#module-flask.json
http://httpd.apache.org/docs/current/programs/ab.html

A micro web framework that revolutionized how web is developed with
python.

Flask

https://flask.palletsprojects.com/en/1.1.x/

Library to write concurrent IO-bound* code using the async/await syntax.

* Example for IO-bound: http requests ; example for CPU-bound:
compression.

Asyncio

https://docs.python.org/3/library/asyncio.html

Why asyncio? what’s wrong with thread / process per request?

Currently, we consume more HTTP based services than ever.

=> We easily reach 10k connections concurrently on a single server (AKA c10k
problem).

=> cooperative tasks that can better utilize a CPU can save a lot of $$$.

Asyncio - cont.

https://en.wikipedia.org/wiki/C10k_problem

Python 3.6+ web server & web framework that’s written to go fast using the
async/await syntax.

Sanic

https://sanic.readthedocs.io/en/latest/

● CRUD for python packages metadata used by content curators.
● Get your daily random python package metadata for fun and profit.

Introducing pyaday

Introducing pyaday - cont.

TODO: examples

Introducing pyaday - cont.

TODO: examples

Introducing pyaday - cont.

Introducing pyaday - cont.

TODO: examples

Introducing pyaday - cont.

TODO: examples

Introducing pyaday - cont.

Introducing pyaday - cont.

TODO: examples

Introducing pyaday - cont.

Better bang for the buck for a large scale expensive cloud deployment or a
limited in resources on premises deployment.

=> Meaning - it will save you $$$

In addition, we’ll try to show the migration is not difficult and the flask
knowledge is not wasted.

Why convert?

Prerequisite:
A project that can benefit from conversion written in python3.6-3.8 (I used
3.8.3).

$ poetry init #not mandatory, my preference
$ poetry add sanic

* Flask v1.1.2 & Sanic v20.3.0 were used, so syntax may vary on different
versions.

Let the conversion begin!

https://python-poetry.org/

App constructor

Route

● On Flask request object is globally imported ; on Sanic it is the first arg.
● On Sanic, the route is a coroutine (a function that uses the async

keyword).

JSON response

Happy path:

JSON response - cont.
Error handling (according to RFC7807):

* There are other Flask options:

 response = jsonify(title=”...”)

 response.status =...

 return response

https://tools.ietf.org/html/rfc7807

Auto reload for development

Same for Flask & Sanic*

* There are other options as well:
- Flask, from terminal:

FLASK_ENV=development FLASK_APP=main_flask.py flask run
- Sanic: app.run(auto_reload=true)

* Used for sub-routing => contains all the exposed methods of a certain route.
* Sanic does not require import_name.

Blueprint

Blueprint - cont.

* register_blueprint can work as well in Sanic, but it is marked as deprecated.

Post conversion diff

Post conversion diff - cont.

Post conversion diff - cont.

Post conversion diff - cont.

Post conversion diff - cont.

Testing

* Test client: Flask through a method and a context manager ; Sanic - through
an attribute.
* Calling routes: Flask - returns `response` ; Sanic - returns `request` &
`response`.
* Check response status: Flask - `status_code` ; Sanic - `status`.

Testing Diff

Sanic tests can also be async (pytest-sanic package is a requirement for this):

Testing Diff - cont.

https://github.com/yunstanford/pytest-sanic

* There is only one return value - response, similar to Flask.

* Need to “await” every server call as opposed to Flask.

Testing Diff - cont.

Deployment

Deployment - cont.

5-6x for GET /rand route

Not always a fairytale
● A cognitive bourdain: for a performant (and an effective) async code the

event loop must never be blocked:
○ IO should be await(ed)
○ CPU should run elsewhere (loop.run_in_executor(...))

● Sanic’s ecosystem is not as rich as Flask’s ecosystem. It is noticeable on
Github, on the number of available tutorials and on 3rd party integrations
(like okta, auth0 or swagger-codegen).

https://github.com/mekicha/awesome-sanic
https://github.com/humiaozuzu/awesome-flask

Not always a fairytale - cont.
● Need to use 3rd party libraries that do not block IO:

○ psycopg2 -> asyncpg / aiopg*
○ requests -> httpx / aiohttp
○ redis -> aioredis / asyncio-redis

...

* That’s why a DB wasn’t used for the converted application - to make the
comparison simple.

The async web framework landscape
● Sanic was chosen for this talk because:

○ It is popular on Github
○ The API it exposes is very similar to the API exposed by Flask. When the API is not the

same, it seems like a reasonable evolution that’s made possible because there isn’t a lot
of backward compatibility needed.

○ It is backed by a community run organization.
○ 90s flashback :)

● Quart is also a Flask like async web framework.
● Fastapi is a hybrid web framework (sync and an async) with dependency

injection as a guiding principle.

https://pgjones.gitlab.io/quart/index.html
https://fastapi.tiangolo.com/

Summary
● When a Flask app that mostly performs IO becomes

resource hungry, it is worthwhile to convert it to Sanic in
reasonable effort.

● After converting, the code must be IO & CPU aware in
order to not block the event loop.

@DavidBordeynik

https://twitter.com/DavidBordeynik

