Flasync Await

David Bordeynik

EuroPython 2020

Setting up expectations

This session IS a mind opener on how to provide added value with minimal
effort.

This session IS NOT about saying X is a bad technology and Y is a good
technology.

Assuming knowledge in web development and REST APIs in particular.

%‘n

G |

Motivation

from flask import Flask
app = Flask(__name__)
@app.route("/")

def hello():
return {"hello": "world"}

if __name__ == "__main__":
app.run()

3-4x

from sanic import Sanic
from sanic.response import json

app = Sanic(__name__)
@app.route("/")

async def hello(_):
return json({"hello": "world"})

if __name__ == "__main__";
app.run()

=8

=

Motivation - cont.

Concurrency Level:
Time taken for tests:
Complete requests:
Failed requests:
Total transferred:
HTML transferred:
Requests per second:
Time per request:
Time per request:
Transfer rate:

100

13.247 seconds
10000

0

1630000 bytes
180000 bytes

754 .88 [#/sec] (mean)
132.471./(ms] (mean)

1.325 [ms] (mean, across all
120.16 [Kbytes/sec] received

3-4x

Concurrency Level:

Time taken for tests:

Complete requests:
Failed requests:
Total transferred:
HTML transferred:
Requests per second:
Time per request:
Time per request:
Transfer rate:

100

4.000 seconds
10000

0

1070000 bytes
170009 bytes

2499.90\[#/sec] (mean)
49.002 /ms] (mean)

0.990 [ms] (mean, across all
261.22 [] received

&b

=

Notes on the motivation experiment

e simplejson is installed as an for flask.
o is used for benchmarking.

%‘n

G |

https://flask.palletsprojects.com/en/1.1.x/api/?highlight=simplejson#module-flask.json
http://httpd.apache.org/docs/current/programs/ab.html

Flask

A micro web framework that revolutionized how web is developed with
python.

fb‘!

!/)
ven

https://flask.palletsprojects.com/en/1.1.x/

Library to write concurrent IO-bound* code using the async/await syntax.

* Example for IO-bound: http requests ; example for CPU-bound:
compression.

ﬁ‘!

‘)
ven

https://docs.python.org/3/library/asyncio.html

Asyncio - cont.

Why asyncio? what's wrong with thread / process per request?
Currently, we consume more HTTP based services than ever.

=> We easily reach 10k connections concurrently on a single server (AKA
problem).

=> cooperative tasks that can better utilize a CPU can save a lot of $$$.

ﬁ‘!

P
ven

https://en.wikipedia.org/wiki/C10k_problem

Sanic

Python 3.6+ web server & web framework that's written to go fast using the
async/await syntax.

f‘n

‘)
ven

https://sanic.readthedocs.io/en/latest/

Introducing pyaday

e CRUD for python packages metadata used by content curators.
e (et your daily random python package metadata for fun and profit.

fﬁ‘!

G |

Introducing pyaday - cont.

> http http://127.0.0.1:5000/rand

/ 0K
Content-Length: 97
Content-Type: application/json
Date: Thu, @9 Jul 2020 11:52:28 GMT
Server: Werkzeug/1.0.1 Python/3.8.2

{

"name": "poetry",
"short_desc": "Python dependency management and packaging made easy."

Introducing pyaday - cont.

from flask import Flask

from pyaday.api.packages import packages_bp
from pyaday.api.rand import rand_bp

app = Flask(__name__)

app.register_blueprint(=packages_bp,

=" /packages")
app.register_blueprint(=rand_bp, ="/rand")
if __name__ == "__main__":

app.run()

Introducing pyaday - cont.

import json

from flask import Blueprint, Response, request
from werkzeug.datastructures import Headers

packages_bp = Blueprint(name="packages_bp", import_name=__name__)

python_packages = [

{
1 "name": "flask",
"short_desc": "A simple framework for building complex web applications.",
},
{
| "name": "sanic",
"short_desc": " A web server and web framework that's written to go fast. Build fast. Run fast.",
r
1

"name": "poetry",
"short_desc": "Python dependency management and packaging made easy.",)

=
}, : =
] e

Introducing pyaday - cont.

@packages_bp.route("", thods=["P0OST"])
def create_package():
req_data = request.json
python_packages.append(
"name": req_data.get("name"), "short_desc": req_data.get("short_desc")}

)
return Response(
;e=None,
=201,
| ;={"Location": f"/packages/{req_data.get('name')}"},
)

Introducing pyaday - cont.

@packages_bp.route("/<package_name>", methods=["GET"])
def read_package(package_name):
for python_package in python_packages:
.~ if python_package["name"] == package_name:
| | return jsonify(python_package)
return Response(
| esponse=json.dumps({"title": "Could not find a package"}),
15=404,
1't_type="application/problem+json",

;)

Introducing pyaday - cont.

@packages_bp.route("/<package_name>", methods=["PUT"])
def update_package(package_name):

req_data = request.json

for python_package in python_packages:

if python_package["name"] == package_name:
python_package["short_desc"] = req_data.get("short_desc")
return Response(response=None, st: =2084)

return Response(
={"title": "Could not find a package"},
5=404,
: ype="application/problem+json",

Introducing pyaday - cont.

@packages_bp.route("/<package_name>", methods=["DELETE"])
def delete_package(package_name):
for idx, python_package in enumerate(python_packages):

if python_package["name"”] == package_name:
del python_packages[idx]
return Response(res se=None, status=284)

return Response(
se=json.dumps({"title": "Could not find a package"}),
rus=404,
' ="application/problem+json",

Introducing pyaday - cont.

import random
from flask import Blueprint, jsonify

from pyaday.api.packages import python_packages

rand_bp = Blueprint(="pand_bp",
» =__name__)
@rand_bp.route("", =["GET"])

def read_random_package():
return jsonify(random.choice(python_packages))

Why convert?

Better bang for the buck for a large scale expensive cloud deployment or a
limited in resources on premises deployment.

=> Meaning - it will save you $$$

In addition, we'll try to show the migration is not difficult and the flask
knowledge is not wasted.

ﬁ‘!

V;
ven

Let the conversion beginl!

Prerequisite:
A project that can benefit from conversion written in python3.6-3.8 (I used
3.8.3).

$ init #not mandatory, my preference
$ poetry add sanic

* Flask v1.1.2 & Sanic v20.3.0 were used, so syntax may vary on different
versions.

ﬁ‘!

P
ven

https://python-poetry.org/

App constructor

from flask import Flask from sanic import Sanic

app = Flask(__name__) app = Sanic(__name__)

‘)
{

Route

from flask import request

@app.route("/")) @app.route("/")
def hello(): async def hello(request):

e On Flask request object is globally imported ; on Sanic it is the first arg.
e On Sanic, the route is a coroutine (a function that uses the async
keyword).

r\

_.)

0

JSON response

Happy path:

return {"hello": "world"}

from flask import jsonify

return jsonify({"hello": "world"})

>

from sanic.response import json

return json({"hello": "world"})

!‘)
{

JSON response - cont.

Error handling (according to REC7807):

return Response(
=json.dumps({"title": "Could not find a package"}),
=404,

="application/problem+json",

>

* There are other Flask options: ,
return response.json(

={"title": "Could not find a package"},
=404,

response.status =... ="application/problem+jsqpis

> =

response = jsonify(title="...”)

rﬁ

return response

https://tools.ietf.org/html/rfc7807

Auto reload for development

if __name__ == "__main__":
app.run(=True)

Same for Flask & Sanic*

* There are other options as well:
- Flask, from terminal:
FLASK_ENV=development FLASK_APP=main_flask.py flask run
- Sanic: app.run(auto_reload=true)

fﬁ‘!

G |

Blueprint

import random import random

from flask import Blueprint, jsonify from sanic import Blueprint, response

from pyaday.api.packages import python_packages

rand_bp = Blueprint(="rand_bp", _9

from pyadayasync.api.packages import python_packages

St rand_bp = Blueprint(="rand_bp")
@rand_bp.route("", =["GET"]) @rand_bp.route("", =["GET"])
def read_random_package(): async def read_random_package(_):
return jsonify(random.choice(python_packages)) return response.json(random.choice(python_packages))

* Used for sub-routing => contains all the exposed methods of a certain route.
* Sanic does not require import_name.

0

Blueprint - cont.

app.register_blueprint(=rand_bp, ="/rand")

'

app.blueprint(=rand_bp, ="/rand")

* register_blueprint can work as well in Sanic, but it is marked as deprecated.

ﬁ‘!

!/)
ven

Post conversion diff

from flask import Blueprint, Response, request »3 1« |from sanic import Blueprint, response
4 2
packages_bp = Blueprint(="packages_bp", =__name__) 5 3 & | packages_bp = Blueprint(="packages_bp")

Post conversion diff - cont.

@packages_bp.route("", =["POST"])
def create_package():
req_data = request.json
python_packages.append(

"name": req_data.get("name"), "short_desc": req_data.get("short_desc")

)
return Response(
=None,
=201,

={"Location": f"/packages/{req_data.get('name')}"}

21
22 1L
23
24
25
26
27 b
28
29
30
31

@packages_bp.route("", =["POST"])
async def create_package(request): |‘
req_data = request.json
python_packages.append(
"name": req_data.get("name"), "short_desc": req_data.get("short_desc")}

) —
return response.empty(
=201, B
={"Location": f"/packages/{req_data.get('name')}"}
)

Post conversion diff - cont.

@packages_bp.route("/<package_name>", =["GET"])
def read_package(package_name):
for python_package in python_packages:
if python_package["name"] == package_name:

|

return j
return Response(

=json.dumps({"title": "Could not find a package"}),

=404,

sonify(python_package)

="application/problem+json",

33
34 1L
35
36
37 1L
38
39
40
41
42

@packages_bp.route("/<package_name>", =["GET"])
async def read_package(_, package_name):
for python_package in python_packages:
if python_package["name"] == package_name:
return response.json(=python_package)
return response.json(
={"title": "Could not find a package"},
=404,
="application/problem+json",

=
-

Post conversion diff - cont.

‘@packages_bp.route("/<package_name>", =["PUT"]) 52 44 @packages_bp.route("/<package_name>", =["PUT"])
def update_package(package_name) : 4153 45 1L |async def update_package(request, package_name):
req_data = request.json 54 46 req_data = request.json
for python_package in python_packages: 55 47 for python_package in python_packages:
if python_package["name"] == package_name: 56 48 if python_package["name"] == package_name:
python_package["short_desc"] = req_data.get("short_desc") 57 49 python_package["short_desc"] = req_data.get("short_desc")
return Response(=None, =204) 4158 50 1L return response.empty(=204)
return Response(59 51 return response.json(
=json.dumps({"title": "Could not find a package"}), 60 52 ={"title": "Could not find a package"},
=404, 61 53 =404,
="application/problem+json", 62 54 ="application/problem+json",
) 63 55)

Post conversion diff - cont.

@packages_bp.route("/<package_name>", =["DELETE"])
def delete_package(package_name):

for idx, python_package in enumerate(python_packages):

if python_package["name"] == package_name:
del python_packages[idx]
return Response(=None, =284)

return Response(
=json.dumps({"title": "Could not find a package"}),
=484,
="application/problem+json",

66
» 67
68
69
70
» 71
72
73
74
75
76

58
59 K
60
61
62
63 K
64
65
66
67
68

@packages_bp.route("/<package_name>", =["DELETE"])
async def delete_package(_, package_name):

for idx, python_package in enumerate(python_packages):

if python_package["name"] == package_name:
del python_packages[idx]
return response.empty(=204)

return response.json(
={"title": "Could not find a package"},
=404,
="application/problem+json”,

=
-

with app.test_client() as test_client:
T@STlng response = test_client.get("rand")
assert response.status_code == 2080

assert response.headers["content-type"] == "application/json"

test_client app.test_client

_, response = test_client.get("rand")

assert response.status == 200

assert response.headers["content-type"] == "application/json"

* Test client: Flask through a method and a context manager ; Sanic - through
an attribute.

* Calling routes: Flask - returns " response’ ; Sanic - returns " request” &

" response’ .

* Check response status: Flask - " status_code™ ; Sanic - “status’. -)

r\

0

Testing Diff

test_packages.py (/L Y test packages.py (/L Y

B from main_flask import app 41 1L | from main_sanic import app
2 2
3 3
def test_packages_crud(): 4 4 def test_packages_crud():
with app.test_client() as test_client: 45 51 test_client = app.test_client

response = test_client.post(6 6 _, response = test_client.post(

"/packages", 7 7 "/packages",

json={ 8 8 json={

"name": "dynaconf", 9 9 "name": "dynaconf",
"short_desc": "The dynamic configurator for your Python Projeci 10 10 "short_desc": "The dynamic configurator for your Python Projects",

i ol B i
) 12 12)
assert response.status_code == 201 13 13 assert response.status == 201
response = test_client.get("/packages/dynaconf") 14 14 _, response = test_client.get("/packages/dynaconf")
assert response.status_code == 280 15 15 assert response.status == 200
assert (16 16 assert (

response.json["short_desc"] 17 A7 response.json["short_desc"]

== "The dynamic configurator for your Python Projects" 18 18 == "The dynamic configurator for your Python Projects"
) 19 19)
response = test_client.put(200 20 _, response = test_client.put(

"/packages/dynaconf", 21 21 "/packages/dynaconf",

json={"short_desc": "The dynamic configurator for your Python Proje 22 22 json={"short_desc": "The dynamic configurator for your Python Project"}
) 23 23)
assert response.status_code == 284 24 24 assert response.status == 204
response = test_client.get("/packages/dynaconf") 25 25 _. response = test_client.get("/packages/dynaconf")
assert response.status_code == 280 26 26 assert response.status == 200
assert (27 27 assert (

response.json["short_desc"] 28 28 response.json["short_desc"]

== "The dynamic configurator for your Python Project” 29 29 == "The dynamic configurator for your Python Project”
) 30 30)
response = test_client.delete("/packages/dynaconf") 31 31 _, response = test_client.delete("/packages/dynaconf") T
assert response.status_code == 284 32 32 assert response.status == 204
response = test_client.get("/packages/dynaconf") 33 33 _, response = test_client.get("/packages/dynaconf")
assert response.status_code == 484 34 34 assert response.status == 484

Testing Diff - cont.

Sanic tests can also be async (pytest-sanic package is a requirement for this):

test_client

app.test_client

_, response = test_client.get("rand")
assert response.status == 200
assert response.headers["content-type"] == "application/json"

@pytest.fixture
def test_client(loop, sanic_client):
return loop.run_until_complete(sanic_client(app))

async def test_rand_async(test_client):

response = await test_client.get("/rand")
assert response.status == 200 ‘ %)

assert response.headers["content-type"] == "application/json" iil,

https://github.com/yunstanford/pytest-sanic

Testing Diff - cont.

* There is only one return value - response, similar to Flask.

* Need to "await” every server call as opposed to Flask.

’ﬁ‘!

G |

Deployment

> gunicorn -w 4 main_flask:app -b 127.0.0.1:5000
[2020-07-09 15:11:07 +0300] [98065] [INFO] Starting gunicorn 20.0.4

[2020-07-09 15:11:07 +0300] [98065] [INFO] Listening at: http://127.0.0.1:5000 (98065)
[2020-07-09 15:11:07 +0300] [98065] [INFO] Using worker: sync

v

> gunicorn -w 4 -k uvicorn.workers.UvicornWorker main_sanic:app -b 127.0.0.1:8000
[2020-07-09 15:11:53 +0300] [98087] [INFO] Starting gunicorn 20.0.4

[2020-07-09 15:11:53 +0300] [98087] [INFO] Listening at: http://127.0.0.1:8000 (98087)
[2020-07-09 15:11:53 +0300] [98087] [INFO] Using worker: uvicorn.workers.UvicornWorker

s

Deployment - cont.

Server Software:
Server Hostname:
Server Port:

Document Path:
Document Length:

Concurrency Level:

Time taken for tests:

Complete requests:
Failed requests:
Total transferred:
HTML transferred:
Requests per second:
Time per request:
Time per request:
Transfer rate:

gunicorn/20.0.4
127.0.0.1
5000

/rand
Variable

100

9.816 seconds

10000

(/]

2491241 bytes

967854 bytes

1018.78 \#/sec] (mean)
98.156 Fins] (mean)

0.982 [ms] (mean, across all
247 .85 [Kbytes/sec] received

Server Software:
Server Hostname:
Server Port:

Document Path:
Document Length:

Concurrency Level:

Time taken for tests:

Complete requests:
Failed requests:
Total transferred:
HTML transferred:
Requests per second:
Time per request:
Time per request:
Transfer rate:

5-6x for GET /rand route

uvicorn
127.0.0.1
8000

/rand
Variable

100

1.552 seconds

10000

(/]

2210797 bytes

957432 bytes

6445.09\[#/sec] (mean)

15.516 FPms] (mean)

@0.155 [ms] (mean, across all ¢
1391.48 [Kbytes/sec] received

S

Not always a fairytale

e A cognitive bourdain: for a performant (and an effective) async code the

event loop must never be blocked:

o IO should be await(ed)
o CPU should run elsewhere (loop.run_in_executor(...))

o is not as rich as . It is noticeable on
Github, on the number of available tutorials and on 3rd party integrations
(like okta, authO or swagger-codegen).

humiaozuzu / awesome-flask

ﬁ‘!

P
ven

https://github.com/mekicha/awesome-sanic
https://github.com/humiaozuzu/awesome-flask

Not always a fairytale - cont.

e Need to use 3rd party libraries that do not block IO:
o psycopg? -> asyncpg / aiopg*
o requests -> httpx / aiohttp
o redis -> aioredis / asyncio-redis

* That's why a DB wasn't used for the converted application - to make the
comparison simple.

The async web framework landscape

e Sanic was chosen for this talk because:

o It is popular on Github |EEaEkE
o The APT it exposes is very similar to the API exposed by Flask. When the API is not the

same, it seems like a reasonable evolution that's made possible because there isn't a lot
of backward compatibility needed.

o It is backed by a community run organization.

o 90s flashback :) &

is also a Flask like async web framework.
o is a hybrid web framework (sync and an async) with dependency
injection as a guiding principle.

ﬁ‘!

P
ven

https://pgjones.gitlab.io/quart/index.html
https://fastapi.tiangolo.com/

Summary

e When a Flask app that mostly performs IO becomes
resource hungry, it is worthwhile to convert it to Sanic in
reasonable effort.

e After converting, the code must be IO & CPU aware in
order to not block the event loop.

@DavidBordeynik

https://twitter.com/DavidBordeynik

