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How to use Discrete-Event Simulation

to run your system faster than

real-time?






https://docs.google.com/file/d/1zBFwco-lynOSkVfAWZxjkMKB4Z9DmXAz/preview

About Me

e Eran Friedman
® Team lead @ Fabric

e Nowadays developing
the Ground Robot
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Outline

e Simulations - why?

e How to use DES?

e How to use SimPy¢

e What are the challenges?

e How to distribute?



Simulation

“An approximate imitation of the

operation of a process or system ...”

- Wikipedia
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Importance of Simulations
COVID-19




Importance of Simulations
Automated regression tests

Regression:
“when you fix one bug, you
introduce several newer bugs.”




Importance of Simulations
Analyze performance & compare algorithms
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Importance of Simulations

Run in the cloud




Importance of Simulations
Verify warehouse layout
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Importance of Simulations
Inject failures & improve robustness




Importance of Simulations
Simulate a large facility
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Discrete-Event Simulation (DES)

e Operations are modeled as sequence of events
e Simulation jumps to the next event

e Simulation maintains its own clock

e Example: 2 m/s, 10 time-ticks/second
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SimPy Library

e Discrete-event simulation (DES) framework
e Created in 2002

e MIT license

e Pure Python

e No dependencies



SimPy Overview
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SimPy Example - Robot Race

e A robot’s speed is about 2-4 meters/second




from random import randint
import simpy

num robots =
sim time = 30 # seconds
time tick = 0.5

class Robot:
def move(self, env, robot id):
pos = 0
while True:
pos += randint(1l,2)
print(f"{env.now} r {robot id} moved to {pos}")
yield env.timeout(time tick)

simpy.Environment()
1 in range(num_robots):

r = Robot()
env.process(r.move(env, robot id=i))

.run(until=sim time)




SimPy Example - Robot Race

e All SimPy processes run in a single thread
e Parameters that affect performance:

o Number of simulated components

o Time tick granularity

e (Can run in ‘real-time’ mode

(¢ { FINISH )))




Benefits of DES

® Accelerates development time and faster CI

HEY! GET BACK
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Benefits of DES

® Accelerates development time and faster CI
e Realistic and deterministic simulation
e Simulate any date and time of the day

HEY! GET BACK | —F
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Multi-Threaded System
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Time Leak - Event-Driven Component

e Not naturally tied to time
e SimPy supports event-driven processes
e Not suitable for multi-threaded systems



Time Leak - Event-Driven Component

e Not naturally tied to time
e SimPy supports event-driven processes
e Not suitable for multi-threaded systems

Solution:
Inherit from Queue and create a SimPy process
that joins on itself in each time tick
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reading impor
from queue import Queue
import simpy

time tick =1
sim = True

class EventDrivenQueue(Queue):
def __init_ (self, env, *args, **kwargs):
super(). init (*args, **kwargs)
if sim:
env.process(self. sim join(env))

def _sim_join(self, env):
while True:
self.join()
yield env.timeout(time tick)

class EventDrivenComponent:
def run(self):
while True:
msg = q.get()
print(f"Got {msg}")
q.task done()

class SimRobot:
def work(self, env):
T =3
while True:
q.put(f"msg {i}")
1+=1
yield env.timeout(time tick)




Implementation

e SimPy code runs in simulation only

e (Can’t use the usual time-related functions.
Wrapping time-related functionality in our
own module
o time.time()
o time.sleep()

O o o o

e Debugging - simulation timestamp in log
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Distributed Simulation
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Distributed Simulation
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Summary

Simulation is a powerful tool

DES makes it more powerful

—

Py is SimPle
Time leak - synchronize all components time

Easy to extend to a distributed simulation

A



Thank You!




