Boosting Simulation Performance
with Python

&)

Eran Friedman

IF@bFic

How to use Discrete-Event Simulation

to run your system faster than

real-time?

https://docs.google.com/file/d/1zBFwco-lynOSkVfAWZxjkMKB4Z9DmXAz/preview

About Me

e Eran Friedman
® Team lead @ Fabric

e Nowadays developing
the Ground Robot

IFa@brric

Outline

e Simulations - why?

e How to use DES?

e How to use SimPy¢

e What are the challenges?

e How to distribute?

Simulation

“An approximate imitation of the

operation of a process or system ...”

- Wikipedia

Simulation

Backend

[Orders J[Stock J[Motion J S

Simulation

Backend

[Orders J[Stock J[Motion J S

Importance of Simulations
COVID-19

Importance of Simulations
Automated regression tests

Regression:
“when you fix one bug, you
introduce several newer bugs.”

Importance of Simulations
Analyze performance & compare algorithms

COMMONSENSE & a o
ROBOTICS ®
Overview + 0O A App Basic Indicators B Calendar O Refresh

[Website metrics

Pick rate Robot MA
+5.78% k k 1% B 4%
298’203 5.78% 571 342| 982.03'(1.11% 58.7% 40.4%
Behavior analysis ~
Event analysis 7% &
Ik Gl ° 7) 459k +4.23% -6.32% /
(Funnel analysis
[0 Distribution analysis ~N
40.4% o o \ﬁ
© Thermallandiysic 33.1k -8.45% +4.56%
V> Click analysis —
o Interval analysis ks 1.3k -1.98% +8.12% \/\/

User analysis ~
o Data conversion rate Week Items Distribution Week
Q: User population
Sa Attribute analysis
fa
(4 a O (ef~
- = {
(] .

Importance of Simulations

Run in the cloud

Importance of Simulations
Verify warehouse layout

iy _ i
= i

Importance of Simulations
Inject failures & improve robustness

Importance of Simulations
Simulate a large facility

EY

®

B COMMONSENSE
ROBOTICS

Dashboard

Inbound

Outbound

Stock

Products

Trips

Loads

Resources

System

QC Tasks

Map

27

Robots status: = RUNNING (i) <]* O

shelves opacity

shelves color 0xd3d3d3

sample interval
Show robot ID's W

map mode BASIC v

Close Controls

Discrete-Event Simulation (DES)

e Operations are modeled as sequence of events
e Simulation jumps to the next event

e Simulation maintains its own clock

e Example: 2 m/s, 10 time-ticks/second

|

|

| | |
t=0 t=0.1 t=0.2
x=0cm x=20cm x=40cm

Discrete-Event Simulation (DES)

e Operations are modeled as sequence of events
e Simulation jumps to the next event

e Simulation maintains its own clock

e Example: 2 m/s, 10 time-ticks/second

l)

| | |
t=0 t=0.1 t=0.2
x=0cm x=20cm x=40cm

|

Discrete-Event Simulation (DES)

e Operations are modeled as sequence of events
e Simulation jumps to the next event

e Simulation maintains its own clock

e Example: 2 m/s, 10 time-ticks/second

|

| | |
t=0 t=0.1 t=0.2
x=0cm x=20cm x=40cm

|

SimPy Library

e Discrete-event simulation (DES) framework
e Created in 2002

e MIT license

e Pure Python

e No dependencies

SimPy Overview

t O

Processes:

r0 rl

Event queue

SimPy Overview

Environment

D
t=0

Processes:

r0

Event queue

rl

SimPy Overview

Environment @
t=0

Executing -

r0
t=0 Processes:

r0 rl

Event queue

SimPy Overview

Environment

Executing -

F___

1 10 !

D
t=0

; =0 | Processes:

r0

Event queue

rl

SimPy Overview

Environment

Executing -

D
t=0

Processes:

r0

Event queue

rl

SimPy Overview

Environment @
t=0

Executing -

rl
t=0 : Processes:

r0 rl

Event queue

SimPy Overview

Environment

Executing -

F___

:rl:

D
t=0

, =0 ! : Processes:

r0

Event queue

rl

SimPy Overview

Environment

Executing -

D
t=0

Processes:

r0

Event queue

rl

SimPy Overview

Environment

Executing -

r0
t=0.1

rl

t=0.1
"

Event queue

Processes:

r0

rl

SimPy Example - Robot Race

e A robot’s speed is about 2-4 meters/second

from random import randint
import simpy

num robots =
sim time = 30 # seconds
time tick = 0.5

class Robot:
def move(self, env, robot id):
pos = 0
while True:
pos += randint(1l,2)
print(f"{env.now} r {robot id} moved to {pos}")
yield env.timeout(time tick)

simpy.Environment()
1 in range(num_robots):

r = Robot()
env.process(r.move(env, robot id=i))

.run(until=sim time)

SimPy Example - Robot Race

e All SimPy processes run in a single thread
e Parameters that affect performance:

o Number of simulated components

o Time tick granularity

e (Can run in ‘real-time’ mode

(¢ { FINISH)))

Benefits of DES

® Accelerates development time and faster CI

HEY! GET BACK

Benefits of DES

® Accelerates development time and faster CI
® Realistic and deterministic simulation

e ey
HEY! GET BACK

Benefits of DES

® Accelerates development time and faster CI
e Realistic and deterministic simulation
e Simulate any date and time of the day

HEY! GET BACK | —F
TOVORK! —

J —

Multi-Threaded System

Backend

[Orders J[Stock J[Motion J S

Time Leak - Event-Driven Component

e Not naturally tied to time
e SimPy supports event-driven processes
e Not suitable for multi-threaded systems

Time Leak - Event-Driven Component

e Not naturally tied to time
e SimPy supports event-driven processes
e Not suitable for multi-threaded systems

Solution:
Inherit from Queue and create a SimPy process
that joins on itself in each time tick

LooNOULLEWN

reading impor
from queue import Queue
import simpy

time tick =1
sim = True

class EventDrivenQueue(Queue):
def __init_ (self, env, *args, **kwargs):
super(). init (*args, **kwargs)
if sim:
env.process(self. sim join(env))

def _sim_join(self, env):
while True:
self.join()
yield env.timeout(time tick)

class EventDrivenComponent:
def run(self):
while True:
msg = q.get()
print(f"Got {msg}")
q.task done()

class SimRobot:
def work(self, env):
T =3
while True:
q.put(f"msg {i}")
1+=1
yield env.timeout(time tick)

Implementation

e SimPy code runs in simulation only

e (Can’t use the usual time-related functions.
Wrapping time-related functionality in our
own module
o time.time()
o time.sleep()

O o o o

e Debugging - simulation timestamp in log

Distributed Simulation

e —
\
{s}ﬁ {s}ﬁ {ﬁo

Distributed Simulation

&, SERVICE &, SERVICE

Local simpy Local simpy

@ BARRIER
SERVER

&, SERVICE i, SERVICE

Local simpy Local simpy

Distributed Simulation
{é}ﬁ SERVICE g BARRIER

SERVER

create simpy process

start local simpy

loop

do some work

once all clients

: are ready
progress local simpy

Distributed Simulation

ﬁﬁ SERVICE

create simpy process

start local simpy

S

BARRIER
SERVER

loop

do some work

sim time freezes —

progress local simpy

I‘eady

aPPIO\Te

once all clients
are ready

Summary

Simulation is a powerful tool

DES makes it more powerful

—

Py is SimPle
Time leak - synchronize all components time

Easy to extend to a distributed simulation

A

Thank You!

