
Speed Up Your Data Processing
Parallel and Asynchronous Programming in 

Data Science

By: Chin Hwee Ong (@ongchinhwee)

23 July 2020



About me

Ong Chin Hwee 王敬惠

● Data Engineer @ ST Engineering

● Background in aerospace 

engineering + computational 

modelling

● Contributor to pandas 1.0 release

● Mentor team at BigDataX

@ongchinhwee



A typical data science workflow

1. Extract raw data
2. Process data
3. Train model
4. Evaluate and deploy model
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Bottlenecks in a data science project

● Lack of data / Poor quality data
● Data processing

○ The 80/20 data science dilemma
■ In reality, it’s closer to 90/10

@ongchinhwee



Data Processing in Python

● For loops in Python
○ Run on the interpreter, not compiled
○ Slow compared with C

a_list = []
for i in range(100):
    a_list.append(i*i)

@ongchinhwee



Data Processing in Python

● List comprehensions
○ Slightly faster than for loops
○ No need to call append function at each iteration

a_list = [i*i for i in range(100)]

@ongchinhwee



Challenges with Data Processing

● Pandas
○ Optimized for in-memory analytics using DataFrames
○ Performance + out-of-memory issues when dealing 

with large datasets (> 1 GB)

@ongchinhwee

import pandas as pd
import numpy as np
df = pd.DataFrame(list(range(100)))
squared_df = df.apply(np.square)



Challenges with Data Processing

● “Why not just use a Spark cluster?”

Communication overhead: Distributed computing involves 
communicating between (independent) machines across 
a network!

“Small Big Data”(*): Data too big to fit in memory, but not 
large enough to justify using a Spark cluster.

(*) Inspired by “The Small Big Data Manifesto”. Itamar Turner-Trauring (@itamarst) gave 
a great talk about Small Big Data at PyCon 2020. @ongchinhwee



What is parallel processing?
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Let’s imagine I work at a cafe which sells toast.
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Task 1: Toast 100 slices of bread

Assumptions: 
1. I’m using single-slice toasters.
(Yes, they actually exist.)
2. Each slice of toast takes 2 minutes 
to make.
3. No overhead time.

Image taken from: 
https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html

@ongchinhwee
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Sequential Processing

       = 25 bread slices
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Sequential Processing

Processor/Worker: 
Toaster

       = 25 bread slices
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Sequential Processing

Processor/Worker: 
Toaster

       = 25 bread slices        = 25 toasts
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Sequential Processing

Execution Time = 100 toasts × 2 minutes/toast
= 200 minutes 
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Parallel Processing

       = 25 bread slices
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Parallel Processing 
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Parallel Processing 

Processor (Core): 
Toaster
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Processor (Core): 
Toaster

Task is executed using 
a pool of 4 toaster 
subprocesses.

Each toasting 
subprocess runs in 
parallel and 
independently from 
each other.

@ongchinhwee

Parallel Processing 



Parallel Processing 

Processor (Core): 
Toaster

Output of each 
toasting process is 
consolidated and 
returned as an overall 
output (which may or 
may not be ordered).

@ongchinhwee



Parallel Processing 

Execution Time
 = 100 toasts × 2 
minutes/toast ÷ 
4 toasters
= 50 minutes

Speedup
= 4 times

@ongchinhwee



Synchronous vs Asynchronous Execution

@ongchinhwee



What do you mean by “Asynchronous”?
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Task 2: Brew coffee

Assumptions: 
1. I can do other stuff while making 
coffee.
2. One coffee maker to make one cup 
of coffee.
3. Each cup of coffee takes 5 minutes 
to make.

Image taken from: https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619
@ongchinhwee

https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619


Synchronous Execution

Task 2: Brew a cup of coffee on 
coffee machine
Duration: 5 minutes

@ongchinhwee



Synchronous Execution

Task 2: Brew a cup of coffee on 
coffee machine
Duration: 5 minutes

Task 1: Toast two slices of 
bread on single-slice toaster 
after Task 2 is completed
Duration: 4 minutes

@ongchinhwee



@ongchinhwee

Synchronous Execution

Task 2: Brew a cup of coffee on 
coffee machine
Duration: 5 minutes

Task 1: Toast two slices of 
bread on single-slice toaster 
after Task 2 is completed
Duration: 4 minutes

Output: 2 toasts + 1 coffee
Total Execution Time = 5 minutes + 4 minutes = 9 minutes



Asynchronous Execution

While brewing coffee:

Make some toasts:

@ongchinhwee



Asynchronous Execution

Output: 2 toasts + 1 coffee
Total Execution Time = 5 minutes

@ongchinhwee



When is it a good idea to go for 
parallelism?

(or, “Is it a good idea to simply buy a 256-core processor and 
parallelize all your codes?”)

@ongchinhwee



Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.
○ Example: Use list comprehensions or map functions instead of 

for-loops for array iterations.

@ongchinhwee



Practical Considerations

● Is your code already optimized?
● Problem architecture

○ Nature of problem limits how successful parallelization can be.
○ If your problem consists of processes which depend on each 

others’ outputs (Data dependency) and/or intermediate results 
(Task dependency), maybe not.

@ongchinhwee



Practical Considerations

● Is your code already optimized?
● Problem architecture
● Overhead in parallelism

○ There will always be parts of the work that cannot be 
parallelized. → Amdahl’s Law

○ Extra time required for coding and debugging (parallelism vs 
sequential code) → Increased complexity

○ System overhead including communication overhead

@ongchinhwee



Amdahl’s Law and Parallelism

Amdahl’s Law states that the theoretical speedup is defined 
by the fraction of code p that can be parallelized:

S: Theoretical speedup (theoretical latency)
p: Fraction of the code that can be parallelized
N: Number of processors (cores)

@ongchinhwee



Amdahl’s Law and Parallelism
If there are no parallel parts (p 
= 0): Speedup = 0

@ongchinhwee



Amdahl’s Law and Parallelism
If there are no parallel parts (p 
= 0): Speedup = 0

If all parts are parallel (p = 1): 
Speedup = N → ∞

@ongchinhwee



Amdahl’s Law and Parallelism
If there are no parallel parts (p 
= 0): Speedup = 0

If all parts are parallel (p = 1): 
Speedup = N → ∞

Speedup is limited by fraction 
of the work that is not 
parallelizable - will not 
improve even with infinite 
number of processors

@ongchinhwee



Multiprocessing vs Multithreading

@ongchinhwee

Multiprocessing:

System allows executing 
multiple processes at the  
same time using multiple 
processors



Multiprocessing vs Multithreading

Multiprocessing:

System allows executing 
multiple processes at the  
same time using multiple 
processors

Multithreading:

System executes multiple 
threads of sub-processes at 
the same time within a 
single processor

@ongchinhwee



Multiprocessing vs Multithreading

Multiprocessing:

System allows executing 
multiple processes at the  
same time using multiple 
processors

Better for processing large 
volumes of data

Multithreading:

System executes multiple 
threads of sub-processes at 
the same time within a 
single processor

Best suited for I/O or 
blocking operations

@ongchinhwee



Some Considerations

Data processing tends to be more 
compute-intensive

→ Switching between threads 
become increasingly inefficient

→ Global Interpreter Lock (GIL) in 
Python does not allow parallel thread 
execution 

@ongchinhwee



How to do Parallel + Asynchronous in Python?

@ongchinhwee

(without using any third-party libraries)



Parallel + Asynchronous Programming in Python

concurrent.futures module

● High-level API for launching asynchronous (async) 
parallel tasks

● Introduced in Python 3.2 as an abstraction layer over 
multiprocessing module

● Two modes of execution:
○ ThreadPoolExecutor() for async multithreading
○ ProcessPoolExecutor() for async multiprocessing

@ongchinhwee



ProcessPoolExecutor vs ThreadPoolExecutor

From the Python Standard Library documentation:

For ProcessPoolExecutor, this method chops iterables into a number of 
chunks which it submits to the pool as separate tasks. The (approximate) 
size of these chunks can be specified by setting chunksize to a positive 
integer. For very long iterables, using a large value for chunksize can 
significantly improve performance compared to the default size of 1. With 
ThreadPoolExecutor, chunksize has no effect.

@ongchinhwee



ProcessPoolExecutor vs ThreadPoolExecutor

ProcessPoolExecutor:

System allows executing 
multiple processes 
asynchronously using 
multiple processors

Uses multiprocessing 
module - side-steps GIL

ThreadPoolExecutor:

System executes multiple 
threads of sub-processes 
asynchronously within a 
single processor

Subject to GIL - not truly 
“concurrent”

@ongchinhwee



submit() in concurrent.futures

Executor.submit() takes as input:

1. The function (callable) that you would like to run, and
2. Input arguments (*args, **kwargs) for that function;

and returns a futures object that represents the execution of 
the function.

@ongchinhwee



map() in concurrent.futures

Similar to map(), Executor.map() takes as input:

1. The function (callable) that you would like to run, and
2. A list (iterable) where each element of the list is a single 

input to that function;

and returns an iterator that yields the results of the function 
being applied to every element of the list.

@ongchinhwee



Case: Network I/O Operations

Dataset: Data.gov.sg Realtime Weather Readings 
(https://data.gov.sg/dataset/realtime-weather-readings)

API Endpoint URL: https://api.data.gov.sg/v1/environment/

Response: JSON format

@ongchinhwee

https://data.gov.sg/dataset/realtime-weather-readings


Initialize Python modules
import numpy as np

import requests
import json

import sys
import time
import datetime
from tqdm import trange, tqdm
from time import sleep
from retrying import retry

import threading

@ongchinhwee



Initialize API request task
@retry(wait_exponential_multiplier=1000, wait_exponential_max=10000)
def get_airtemp_data_from_date(date):
    print('{}: running {}'.format(threading.current_thread().name,
        date))
    # for daily API request
    url = 
"https://api.data.gov.sg/v1/environment/air-temperature?date="\
        + str(date) 
    JSONContent = requests.get(url).json()
    content = json.dumps(JSONContent, sort_keys=True)
    sleep(1)
    print('{}: done with {}'.format(

threading.current_thread().name, date))
    return content

threading module to 
monitor thread 
execution

@ongchinhwee



Initialize Submission List

date_range = np.array(sorted(
    [datetime.datetime.strftime(
        datetime.datetime.now() - datetime.timedelta(i)
 ,'%Y-%m-%d') for i in trange(100)]))

@ongchinhwee



Using List Comprehensions

start_cpu_time = time.clock()

data_np = [get_airtemp_data_from_date(str(date)) for date in 
tqdm(date_range)]

end_cpu_time = time.clock()
print(end_cpu_time - start_cpu_time)

@ongchinhwee



Using List Comprehensions

start_cpu_time = time.clock()

data_np = [get_airtemp_data_from_date(str(date)) for date in 
tqdm(date_range)]

end_cpu_time = time.clock()
print(end_cpu_time - start_cpu_time)

List Comprehensions:
977.88 seconds (~ 16.3mins)

@ongchinhwee



Using ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor, as_completed

start_cpu_time = time.clock()

with ThreadPoolExecutor() as executor:
    future = {executor.submit(get_airtemp_data_from_date, date):date
        for date in tqdm(date_range)}
resultarray_np = [x.result() for x in as_completed(future)]

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Using ThreadPoolExecutor: {} seconds.\n'.format(
    total_tpe_time))

@ongchinhwee



Using ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor, as_completed

start_cpu_time = time.clock()

with ThreadPoolExecutor() as executor:
    future = {executor.submit(get_airtemp_data_from_date, date):date
        for date in tqdm(date_range)}
resultarray_np = [x.result() for x in as_completed(future)]

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Using ThreadPoolExecutor: {} seconds.\n'.format(
    total_tpe_time))

ThreadPoolExecutor (40 threads):
46.83 seconds (~20.9 times faster)

@ongchinhwee



Case: Image Processing

Dataset: Chest X-Ray Images (Pneumonia) 
(https://www.kaggle.com/paultimothymooney/chest-xray-pneu
monia)

Size: 1.15GB of x-ray image files with normal and pneumonia 
(viral or bacterial) cases

Data Quality: Images in the dataset are of different 
dimensions

@ongchinhwee

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia


Initialize Python modules

import numpy as np
from PIL import Image

import os
import sys
import time

@ongchinhwee



Initialize image resize process
def image_resize(filepath):

  '''Resize and reshape image'''

  sys.stdout.write('{}: running {}\n'.format(os.getpid(),filepath))

  im = Image.open(filepath)

  resized_im = np.array(im.resize((64,64)))

  sys.stdout.write('{}: done with 

{}\n'.format(os.getpid(),filepath))

  return resized_im

os.getpid() to 
monitor process 
execution

@ongchinhwee



Initialize File List in Directory

DIR = './chest_xray/train/NORMAL/'

train_normal = [DIR + name for name in os.listdir(DIR)

    if os.path.isfile(os.path.join(DIR, name))]

No. of images in 
‘train/NORMAL’: 1431

@ongchinhwee



Using map()
start_cpu_time = time.clock()

result = map(image_resize, train_normal)

output = np.array([x for x in result])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Map completed in {} 

seconds.\n'.format(total_tpe_time))

@ongchinhwee



Using map()
start_cpu_time = time.clock()

result = map(image_resize, train_normal)

output = np.array([x for x in result])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Map completed in {} 

seconds.\n'.format(total_tpe_time))

map():
29.48 seconds

@ongchinhwee



Using List Comprehensions

start_cpu_time = time.clock()

listcomp_output = np.array([image_resize(x) for x in 
train_normal])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('List comprehension completed in {} 
seconds.\n'.format(
    total_tpe_time))

@ongchinhwee



Using List Comprehensions

start_cpu_time = time.clock()

listcomp_output = np.array([image_resize(x) for x in 
train_normal])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('List comprehension completed in {} 
seconds.\n'.format(
    total_tpe_time))

List Comprehensions:
29.71 seconds

@ongchinhwee



Using ProcessPoolExecutor
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()

with ProcessPoolExecutor() as executor:
future = executor.map(image_resize, train_normal)

array_np = np.array([x for x in future])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('ProcessPoolExecutor completed in {} 
seconds.\n'.format(
    total_tpe_time))

@ongchinhwee



Using ProcessPoolExecutor
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()

with ProcessPoolExecutor() as executor:
future = executor.map(image_resize, train_normal)

array_np = np.array([x for x in future])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('ProcessPoolExecutor completed in {} 
seconds.\n'.format(
    total_tpe_time))

ProcessPoolExecutor (8 cores):
6.98 seconds (~4.3 times faster)

@ongchinhwee



Key Takeaways
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Not all processes should be parallelized

● Parallel processes come with overheads
○ Amdahl’s Law on parallelism
○ System overhead including communication overhead
○ If the cost of rewriting your code for parallelization 

outweighs the time savings from parallelizing your code, 
consider other ways of optimizing your code instead.

@ongchinhwee
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Reach out to 
me!

: ongchinhwee

: @ongchinhwee

: hweecat

: https://ongchinhwee.me

And check out my slides on:

    hweecat/talk_parallel-async-python
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