
Speed Up Your Data Processing
Parallel and Asynchronous Programming in

Data Science

By: Chin Hwee Ong (@ongchinhwee)

23 July 2020

About me

Ong Chin Hwee 王敬惠

● Data Engineer @ ST Engineering

● Background in aerospace

engineering + computational

modelling

● Contributor to pandas 1.0 release

● Mentor team at BigDataX

@ongchinhwee

A typical data science workflow

1. Extract raw data
2. Process data
3. Train model
4. Evaluate and deploy model

@ongchinhwee

Bottlenecks in a data science project

● Lack of data / Poor quality data
● Data processing

○ The 80/20 data science dilemma
■ In reality, it’s closer to 90/10

@ongchinhwee

Data Processing in Python

● For loops in Python
○ Run on the interpreter, not compiled
○ Slow compared with C

a_list = []
for i in range(100):
 a_list.append(i*i)

@ongchinhwee

Data Processing in Python

● List comprehensions
○ Slightly faster than for loops
○ No need to call append function at each iteration

a_list = [i*i for i in range(100)]

@ongchinhwee

Challenges with Data Processing

● Pandas
○ Optimized for in-memory analytics using DataFrames
○ Performance + out-of-memory issues when dealing

with large datasets (> 1 GB)

@ongchinhwee

import pandas as pd
import numpy as np
df = pd.DataFrame(list(range(100)))
squared_df = df.apply(np.square)

Challenges with Data Processing

● “Why not just use a Spark cluster?”

Communication overhead: Distributed computing involves
communicating between (independent) machines across
a network!

“Small Big Data”(*): Data too big to fit in memory, but not
large enough to justify using a Spark cluster.

(*) Inspired by “The Small Big Data Manifesto”. Itamar Turner-Trauring (@itamarst) gave
a great talk about Small Big Data at PyCon 2020. @ongchinhwee

What is parallel processing?

@ongchinhwee

Let’s imagine I work at a cafe which sells toast.

@ongchinhwee

@ongchinhwee

Task 1: Toast 100 slices of bread

Assumptions:
1. I’m using single-slice toasters.
(Yes, they actually exist.)
2. Each slice of toast takes 2 minutes
to make.
3. No overhead time.

Image taken from:
https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html

@ongchinhwee

https://www.mitsubishielectric.co.jp/home/breadoven/product/to-st1-t/feature/index.html

Sequential Processing

 = 25 bread slices

@ongchinhwee

Sequential Processing

Processor/Worker:
Toaster

 = 25 bread slices

@ongchinhwee

Sequential Processing

Processor/Worker:
Toaster

 = 25 bread slices = 25 toasts

@ongchinhwee

Sequential Processing

Execution Time = 100 toasts × 2 minutes/toast
= 200 minutes

@ongchinhwee

Parallel Processing

 = 25 bread slices

@ongchinhwee

Parallel Processing

@ongchinhwee

Parallel Processing

Processor (Core):
Toaster

@ongchinhwee

Processor (Core):
Toaster

Task is executed using
a pool of 4 toaster
subprocesses.

Each toasting
subprocess runs in
parallel and
independently from
each other.

@ongchinhwee

Parallel Processing

Parallel Processing

Processor (Core):
Toaster

Output of each
toasting process is
consolidated and
returned as an overall
output (which may or
may not be ordered).

@ongchinhwee

Parallel Processing

Execution Time
 = 100 toasts × 2
minutes/toast ÷
4 toasters
= 50 minutes

Speedup
= 4 times

@ongchinhwee

Synchronous vs Asynchronous Execution

@ongchinhwee

What do you mean by “Asynchronous”?

@ongchinhwee

Task 2: Brew coffee

Assumptions:
1. I can do other stuff while making
coffee.
2. One coffee maker to make one cup
of coffee.
3. Each cup of coffee takes 5 minutes
to make.

Image taken from: https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619
@ongchinhwee

https://www.crateandbarrel.com/breville-barista-espresso-machine/s267619

Synchronous Execution

Task 2: Brew a cup of coffee on
coffee machine
Duration: 5 minutes

@ongchinhwee

Synchronous Execution

Task 2: Brew a cup of coffee on
coffee machine
Duration: 5 minutes

Task 1: Toast two slices of
bread on single-slice toaster
after Task 2 is completed
Duration: 4 minutes

@ongchinhwee

@ongchinhwee

Synchronous Execution

Task 2: Brew a cup of coffee on
coffee machine
Duration: 5 minutes

Task 1: Toast two slices of
bread on single-slice toaster
after Task 2 is completed
Duration: 4 minutes

Output: 2 toasts + 1 coffee
Total Execution Time = 5 minutes + 4 minutes = 9 minutes

Asynchronous Execution

While brewing coffee:

Make some toasts:

@ongchinhwee

Asynchronous Execution

Output: 2 toasts + 1 coffee
Total Execution Time = 5 minutes

@ongchinhwee

When is it a good idea to go for
parallelism?

(or, “Is it a good idea to simply buy a 256-core processor and
parallelize all your codes?”)

@ongchinhwee

Practical Considerations

● Is your code already optimized?
○ Sometimes, you might need to rethink your approach.
○ Example: Use list comprehensions or map functions instead of

for-loops for array iterations.

@ongchinhwee

Practical Considerations

● Is your code already optimized?
● Problem architecture

○ Nature of problem limits how successful parallelization can be.
○ If your problem consists of processes which depend on each

others’ outputs (Data dependency) and/or intermediate results
(Task dependency), maybe not.

@ongchinhwee

Practical Considerations

● Is your code already optimized?
● Problem architecture
● Overhead in parallelism

○ There will always be parts of the work that cannot be
parallelized. → Amdahl’s Law

○ Extra time required for coding and debugging (parallelism vs
sequential code) → Increased complexity

○ System overhead including communication overhead

@ongchinhwee

Amdahl’s Law and Parallelism

Amdahl’s Law states that the theoretical speedup is defined
by the fraction of code p that can be parallelized:

S: Theoretical speedup (theoretical latency)
p: Fraction of the code that can be parallelized
N: Number of processors (cores)

@ongchinhwee

Amdahl’s Law and Parallelism
If there are no parallel parts (p
= 0): Speedup = 0

@ongchinhwee

Amdahl’s Law and Parallelism
If there are no parallel parts (p
= 0): Speedup = 0

If all parts are parallel (p = 1):
Speedup = N → ∞

@ongchinhwee

Amdahl’s Law and Parallelism
If there are no parallel parts (p
= 0): Speedup = 0

If all parts are parallel (p = 1):
Speedup = N → ∞

Speedup is limited by fraction
of the work that is not
parallelizable - will not
improve even with infinite
number of processors

@ongchinhwee

Multiprocessing vs Multithreading

@ongchinhwee

Multiprocessing:

System allows executing
multiple processes at the
same time using multiple
processors

Multiprocessing vs Multithreading

Multiprocessing:

System allows executing
multiple processes at the
same time using multiple
processors

Multithreading:

System executes multiple
threads of sub-processes at
the same time within a
single processor

@ongchinhwee

Multiprocessing vs Multithreading

Multiprocessing:

System allows executing
multiple processes at the
same time using multiple
processors

Better for processing large
volumes of data

Multithreading:

System executes multiple
threads of sub-processes at
the same time within a
single processor

Best suited for I/O or
blocking operations

@ongchinhwee

Some Considerations

Data processing tends to be more
compute-intensive

→ Switching between threads
become increasingly inefficient

→ Global Interpreter Lock (GIL) in
Python does not allow parallel thread
execution

@ongchinhwee

How to do Parallel + Asynchronous in Python?

@ongchinhwee

(without using any third-party libraries)

Parallel + Asynchronous Programming in Python

concurrent.futures module

● High-level API for launching asynchronous (async)
parallel tasks

● Introduced in Python 3.2 as an abstraction layer over
multiprocessing module

● Two modes of execution:
○ ThreadPoolExecutor() for async multithreading
○ ProcessPoolExecutor() for async multiprocessing

@ongchinhwee

ProcessPoolExecutor vs ThreadPoolExecutor

From the Python Standard Library documentation:

For ProcessPoolExecutor, this method chops iterables into a number of
chunks which it submits to the pool as separate tasks. The (approximate)
size of these chunks can be specified by setting chunksize to a positive
integer. For very long iterables, using a large value for chunksize can
significantly improve performance compared to the default size of 1. With
ThreadPoolExecutor, chunksize has no effect.

@ongchinhwee

ProcessPoolExecutor vs ThreadPoolExecutor

ProcessPoolExecutor:

System allows executing
multiple processes
asynchronously using
multiple processors

Uses multiprocessing
module - side-steps GIL

ThreadPoolExecutor:

System executes multiple
threads of sub-processes
asynchronously within a
single processor

Subject to GIL - not truly
“concurrent”

@ongchinhwee

submit() in concurrent.futures

Executor.submit() takes as input:

1. The function (callable) that you would like to run, and
2. Input arguments (*args, **kwargs) for that function;

and returns a futures object that represents the execution of
the function.

@ongchinhwee

map() in concurrent.futures

Similar to map(), Executor.map() takes as input:

1. The function (callable) that you would like to run, and
2. A list (iterable) where each element of the list is a single

input to that function;

and returns an iterator that yields the results of the function
being applied to every element of the list.

@ongchinhwee

Case: Network I/O Operations

Dataset: Data.gov.sg Realtime Weather Readings
(https://data.gov.sg/dataset/realtime-weather-readings)

API Endpoint URL: https://api.data.gov.sg/v1/environment/

Response: JSON format

@ongchinhwee

https://data.gov.sg/dataset/realtime-weather-readings

Initialize Python modules
import numpy as np

import requests
import json

import sys
import time
import datetime
from tqdm import trange, tqdm
from time import sleep
from retrying import retry

import threading

@ongchinhwee

Initialize API request task
@retry(wait_exponential_multiplier=1000, wait_exponential_max=10000)
def get_airtemp_data_from_date(date):
 print('{}: running {}'.format(threading.current_thread().name,
 date))
 # for daily API request
 url =
"https://api.data.gov.sg/v1/environment/air-temperature?date="\
 + str(date)
 JSONContent = requests.get(url).json()
 content = json.dumps(JSONContent, sort_keys=True)
 sleep(1)
 print('{}: done with {}'.format(

threading.current_thread().name, date))
 return content

threading module to
monitor thread
execution

@ongchinhwee

Initialize Submission List

date_range = np.array(sorted(
 [datetime.datetime.strftime(
 datetime.datetime.now() - datetime.timedelta(i)
 ,'%Y-%m-%d') for i in trange(100)]))

@ongchinhwee

Using List Comprehensions

start_cpu_time = time.clock()

data_np = [get_airtemp_data_from_date(str(date)) for date in
tqdm(date_range)]

end_cpu_time = time.clock()
print(end_cpu_time - start_cpu_time)

@ongchinhwee

Using List Comprehensions

start_cpu_time = time.clock()

data_np = [get_airtemp_data_from_date(str(date)) for date in
tqdm(date_range)]

end_cpu_time = time.clock()
print(end_cpu_time - start_cpu_time)

List Comprehensions:
977.88 seconds (~ 16.3mins)

@ongchinhwee

Using ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor, as_completed

start_cpu_time = time.clock()

with ThreadPoolExecutor() as executor:
 future = {executor.submit(get_airtemp_data_from_date, date):date
 for date in tqdm(date_range)}
resultarray_np = [x.result() for x in as_completed(future)]

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Using ThreadPoolExecutor: {} seconds.\n'.format(
 total_tpe_time))

@ongchinhwee

Using ThreadPoolExecutor
from concurrent.futures import ThreadPoolExecutor, as_completed

start_cpu_time = time.clock()

with ThreadPoolExecutor() as executor:
 future = {executor.submit(get_airtemp_data_from_date, date):date
 for date in tqdm(date_range)}
resultarray_np = [x.result() for x in as_completed(future)]

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Using ThreadPoolExecutor: {} seconds.\n'.format(
 total_tpe_time))

ThreadPoolExecutor (40 threads):
46.83 seconds (~20.9 times faster)

@ongchinhwee

Case: Image Processing

Dataset: Chest X-Ray Images (Pneumonia)
(https://www.kaggle.com/paultimothymooney/chest-xray-pneu
monia)

Size: 1.15GB of x-ray image files with normal and pneumonia
(viral or bacterial) cases

Data Quality: Images in the dataset are of different
dimensions

@ongchinhwee

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

Initialize Python modules

import numpy as np
from PIL import Image

import os
import sys
import time

@ongchinhwee

Initialize image resize process
def image_resize(filepath):

 '''Resize and reshape image'''

 sys.stdout.write('{}: running {}\n'.format(os.getpid(),filepath))

 im = Image.open(filepath)

 resized_im = np.array(im.resize((64,64)))

 sys.stdout.write('{}: done with

{}\n'.format(os.getpid(),filepath))

 return resized_im

os.getpid() to
monitor process
execution

@ongchinhwee

Initialize File List in Directory

DIR = './chest_xray/train/NORMAL/'

train_normal = [DIR + name for name in os.listdir(DIR)

 if os.path.isfile(os.path.join(DIR, name))]

No. of images in
‘train/NORMAL’: 1431

@ongchinhwee

Using map()
start_cpu_time = time.clock()

result = map(image_resize, train_normal)

output = np.array([x for x in result])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Map completed in {}

seconds.\n'.format(total_tpe_time))

@ongchinhwee

Using map()
start_cpu_time = time.clock()

result = map(image_resize, train_normal)

output = np.array([x for x in result])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('Map completed in {}

seconds.\n'.format(total_tpe_time))

map():
29.48 seconds

@ongchinhwee

Using List Comprehensions

start_cpu_time = time.clock()

listcomp_output = np.array([image_resize(x) for x in
train_normal])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('List comprehension completed in {}
seconds.\n'.format(
 total_tpe_time))

@ongchinhwee

Using List Comprehensions

start_cpu_time = time.clock()

listcomp_output = np.array([image_resize(x) for x in
train_normal])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('List comprehension completed in {}
seconds.\n'.format(
 total_tpe_time))

List Comprehensions:
29.71 seconds

@ongchinhwee

Using ProcessPoolExecutor
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()

with ProcessPoolExecutor() as executor:
future = executor.map(image_resize, train_normal)

array_np = np.array([x for x in future])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('ProcessPoolExecutor completed in {}
seconds.\n'.format(
 total_tpe_time))

@ongchinhwee

Using ProcessPoolExecutor
from concurrent.futures import ProcessPoolExecutor

start_cpu_time = time.clock()

with ProcessPoolExecutor() as executor:
future = executor.map(image_resize, train_normal)

array_np = np.array([x for x in future])

end_cpu_time = time.clock()
total_tpe_time = end_cpu_time - start_cpu_time
sys.stdout.write('ProcessPoolExecutor completed in {}
seconds.\n'.format(
 total_tpe_time))

ProcessPoolExecutor (8 cores):
6.98 seconds (~4.3 times faster)

@ongchinhwee

Key Takeaways

@ongchinhwee

Not all processes should be parallelized

● Parallel processes come with overheads
○ Amdahl’s Law on parallelism
○ System overhead including communication overhead
○ If the cost of rewriting your code for parallelization

outweighs the time savings from parallelizing your code,
consider other ways of optimizing your code instead.

@ongchinhwee

References

Official Python documentation on concurrent.futures
(https://docs.python.org/3/library/concurrent.futures.html)

Source code for ThreadPoolExecutor
(https://github.com/python/cpython/blob/3.8/Lib/concurrent/futures/thr
ead.py)

Source code for ProcessPoolExecutor
(https://github.com/python/cpython/blob/3.8/Lib/concurrent/futures/thr
ead.py)

@ongchinhwee

https://docs.python.org/3/library/concurrent.futures.html
https://github.com/python/cpython/blob/3.8/Lib/concurrent/futures/thread.py
https://github.com/python/cpython/blob/3.8/Lib/concurrent/futures/thread.py
https://github.com/python/cpython/blob/3.8/Lib/concurrent/futures/thread.py
https://github.com/python/cpython/blob/3.8/Lib/concurrent/futures/thread.py

Reach out to
me!

: ongchinhwee

: @ongchinhwee

: hweecat

: https://ongchinhwee.me

And check out my slides on:

 hweecat/talk_parallel-async-python

@ongchinhwee

