
Ensuring data integrity with
asynchronous programming in a

cloud IoT core

Europython 2020

George
Zisopoulos

Python Fanatic, Elixir and Ruby fan.
Also working as Software Engineer
at Veturilo.io

Theofanis
Petkos

Python Enthusiast, Angular
addicted. Currently working as a
Full-Stack Engineer at Veturilo.io

#fleet_management #IoT
#embeded #async #programming

Our Story: Forrest and Lieutenant Dan

Backstage: Two friends working in the same start-up!

Our Story: The fellowship of the core

Backstage: Two friends working in the same start-up!

Mission: Create a fully-operational IoT Core working on fleet management.

IoT (Internet of things): A network of Internet connected objects, able to collect and
exchange data.

Requirements’ menace

Requirement 1: Send data packets from device/sensor to a server.

Requirements’ menace

Requirement 1: Send data packets from device/sensor to a server.

Component 1: Devices (OBDII for our use case) which get signals from
vehicles and sends data packets to a server. Plenty of devices around the
web.

Component 2: An IoT server (IoT core) able to save incoming data and
provide it to applications. Cheap and reliable solutions - cloud servers.

From theory to Python

Requirement 2: Implement some services, inside IoT core, which will save all
incoming data/signals to database.

From theory to Python

Requirement 2: Implement some services, inside IoT core, which will save all
incoming data/signals to database.

Device
Gateway PostgreSQL

Python
IngestDevice

Cloud Server

data packet data data

Are you sure that your incoming data packets were stored properly and in the
desired format?

The dark side of data

Scope of Data Integrity

Two basic principles:

1. Correct and not unintended storage
2. Ensure data quality

Two additional principles:

1. Services Integrity
2. Devices Integrity

Are you sure that your incoming data packets were stored properly and in the
desired format?

The dark side of data

Are you sure that your incoming data packets were stored properly and in the
desired format?

Idea: Upon failure, use filesystem and temporarily save all signals into files.
Then, retry to save all signals to database.

The dark side of data

while True:
 for filename in os.listdir('/dir/path'):
 with open('/dir/path/' + filename) as f:
 content = f.readlines()
 content = [path.strip('\n') for x in content]
 reader = csv.reader(content)

The greatest teacher,
failure is.

Master Yoda, The Last Jedi

Ingest Module/Device Gateway: Connected with RabbitMQ with a publisher. If
something goes wrong publish signal to queue.

Asynchronous, concurrent days

Device
Gateway PostgreSQL

Python
Ingest

Cloud Server
Success

RabbitMQ Queue
Failure

Success

Asynchronous: The occurrence of events independent of the main program flow.

Asynchronous ways of Python

Instance 1 Instance 2request

synchronous response (instant)

Message
broker

Asynchronous response
from worker or thread

Concurrent ways of Python

Concurrency: executing multiple tasks at the same time but not
necessarily simultaneously (like example 2).

NO CONCURRENCY
First task
[2020-07-09 14:21:56,030] Received from:('127.0.0.1', 39580)
[2020-07-09 14:21:56,066] Event ('127.0.0.1', 39580) Pushed Successfully to PostgreSQL
Second task
[2020-07-09 14:21:56,067] Received from:('127.0.0.1', 39584)
[2020-07-09 14:21:56,109] Event ('127.0.0.1', 39584) Pushed Successfully to PostgreSQL

CONCURRENCY
First task starts
[2020-07-09 14:21:56,030] Received from:('127.0.0.1', 39580)
Second task starts
[2020-07-09 14:21:56,031] Received from:('127.0.0.1', 39584)
First task ends
[2020-07-09 14:21:56,066] Event ('127.0.0.1', 39580) Pushed Successfully to PostgreSQL
Second task ends
[2020-07-09 14:21:56,083] Event ('127.0.0.1', 39584) Pushed Successfully to PostgreSQL

Multi-ways of Python

How to achieve concurrency: Multi-threading vs Asyncio.
Thread: The smallest instance that can be managed independently.

 Multi-threading Asyncio
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

await await

await await

await await

await await

await await
Thread 1 Thread 2

Thread 3

Multi Threading on Ingest

How to achieve concurrency: Multi-threading is important to support
concurrency and performance into our Ingesting part.

Python Ingest

PostgreSQL

Start a thread pool executor with specific number of workers
in order to avoid high amount of threads
with cf.ThreadPoolExecutor(max_workers=3) as ingest_executor:
 # signals come to ingest with sockets
 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as gw_socket:
 gw_socket.bind((host, port))
 # Wait to port until a a new signal comes
 gw_socket.listen()
 while True:
 # Accept a new signal and save it to db with a new thread.
 connection, address = gw_socket.accept()
 ingest_executor.submit(save_signal_to_db_method, connection, address)

Small recap

● Python Ingest: Small module which accepts incoming data and parses it to
database.

● Threads - Thread Pool Executor: Multi-threading is used to our python
ingest in order to achieve better performance.

● Device Gateway: A module which receives data packets from devices and
forwards them as signals to ingest.

RabbitMQ as message broker

RabbitMQ: It gives your applications/modules a common platform to send
and receive messages, and your messages a safe place to live until
received.

Device
Gateway

Python
Ingest

RabbitMQ Queue

Failure

Cloud Server

Publisher

Producer: Able to connect with RabbitMQ and publish a message to a
specific queue or exchange.

import pika

def publish(self, signal):
 """
 We skipped try-except blocks in order to have a very simple code
 """
 # Create connection with pika. Parameters are credentials.
 connection = pika.BlockingConnection(parameters)
 # Get a connection channel.
 channel = connection.channel()
 # Declare a new queue. If it’s durable it will be there after a restart.
 channel.queue_declare(queue='queue', durable=True)
 # Publish message to rabbitmq
 properties=pika.BasicProperties(delivery_mode=2)
 channel.basic_publish(exchange='', routing_key='queue' body=signal,
 properties=properties)

Connects with RabbitMQ

Gets connection.channel()

If not exists, declares queue

Publishes message

Consumer

Consumer: Able to receive/consume all messages inside this queue or
exchange. With aioamqp can share thread with other tasks while waiting.

async def consume(**kwargs):
 ""
 Consumer written with aioamqp in order to work with asyncio.
 """
 transport, connection = await aioamqp.connect(
 host=host, port=port, login=username,
 password=password, login_method='PLAIN')
 # some possible exceptions here
 # except aioamqp.AmqpClosedConnection
 # except ConnectionRefusedError

 # create a channel again in order to receive messages
 channel = await connection.channel()
 # Await for a new signal from queue
 await channel.basic_consume(callback, queue_name='events')

Connects with RabbitMQ

Gets connection.channel()

Awaits for a signal

Pushes it back to Ingest

Organize module

Duty: Schedule quality/service checks, push back every failed signal. Built
with asyncio.

Asyncio: Useful tool which support cooperative multitasking. It gives you
the advantage of concurrency inside a single thread.

Asyncio Event
LoopTasks

Organize module

After await stop
this task

Run next task until await command

Gather all tasks before
running event loop

Organize module

Initialize event loop: Create the event loop, gather all tasks and run it.

Create new loop
event_loop = asyncio.new_event_loop()
Set new loop to asyncio
asyncio.set_event_loop(event_loop)
Gather all tasks
event_loop_tasks = asyncio.gather(
 consumer(),
 periodic_task_1(timeout),
 periodic_task_2(timeout))
Try:
 # Run the loop
 event_loop.run_forever()
except KeyboardInterrupt:
 event_loop_tasks.cancel()

Create event loop

Gather your tasks

Run your event loop

The rise of asyncio

After the implementation of previous module the flow of our IoT Core
would be like this:

Device
Gateway PostgreSQL

Python
Ingest

Cloud Server
Success

RabbitMQ Queue

Failure/Publish

Success

Organize Module

Consume

Applies data
quality checks

Push back

Clockwork organizer

Idea 1:

Periodic quality check - Data Quality
Example case - broken gps

Catch 2 - Devices Integrity.
After some errors for the same device,
notify for device check.

Fetch a random set of signals from database
and check if lan,lot values are in correct range
async def periodic_quality_check(timeout):
 while True:
 for signal in list_of_random_signals:
 if wrong_coordinates(signal.longitude, signal.latitude):
 # TODO - Notify user for broken gps.
 # Gives up execution, waits to run after timeout.
 await asyncio.sleep(timeout)

def wrong_coordinates(longitude, latitude):
 """
 Check if longitude and latitude are between correct range
 """
 if (longitude > 90 or longitude < -90 or
 longitude > 180 or longitude < -180):
 return True
 else:
 return False

Clockwork organizer

Idea 2:

Periodic check for services’ heartbeat.
Pretty simple, though not completed, way
to check for services integrity.

async def check_heartbeat(timeout):
 “””
 Checks if services are up.
 “””
 services_list = [(‘127.0.0.1’,2006),(‘127.0.0.1’,5432)]]
 while True:
 for address, port in services_list:
 # simplest way to bind with socket to port
 # in order to check if service is up
 running = bind_to_service(address, port)
 if not running:
 # Notify admin that service is down.
 else:
 # Log that everything into IoT core is ok.
 # give up execution for timeout
 await asyncio.sleep(timeout)

Reinventing the wheel

Another step forward: Merge everything into python ingest. Make message
broker the actual middleman between gateway and ingest.

Device
Gateway PostgreSQL

Python
Ingest

Cloud Server

RabbitMQ Queue

Unacceptable/
Dead letter queue

Failure / Failures queue

SuccessConsumingPublishing

Signals Queue

Periodic
Checks

The artilleryman’s song

Call artillery for help: You could combine this logic with celery or other task queue
software.

Before do so: Code it, break it, smash it and practice! First you have to understand!

Our Story: Endgame

We would like to thank:

● Andreas, George and Harry (the rest of our veturilo.io tech team), for their
unlimited support.

● Panos, George and Thanasis (from stackmasters.eu), for their important help
and ideas.

● Bill (from starttech.eu), for his efforts to organize this presentation.

● The rest of starttech.eu wonderful community for their daily support to our
work.

Our Story: Drop us a line!

Github Repo:

1. https://github.com/gzisopoulos/python-iot-data-integrity

2. https://github.com/thepetk/python-ingest

Discord channel:

#talk-data-integrity-with-async

https://github.com/gzisopoulos/python-iot-data-integrity
https://github.com/thepetk/python-ingest

