
cloudstate.io
serverless 2.0 with cloudstate

Sean Walsh | Field CTO and Cloud Evangelist @ Lightbend

http://cloudstate.io

–Berkely CS Department

“We predict that serverless computing will grow to
dominate the future of cloud computing.”

why serverless 2.0?

FaaS was a great start and paved the way, but it’s
only the first step

we need serverless to allow coarse-grained, general
purpose applications

FaaS != serverless

FaaS

• embarrassingly parallel processes
• orchestration
• stateless web applications
• job scheduling and orchestration

good for:

bad at

• reasoning about as a holistic application
• guarantees around responsiveness and resilience
• general purpose applications

FaaS

Message In User Function Message Out

abstracting over communication

• works great as long as stateless or embarrassingly
parallel

• operational concerns handled (GREAT)

FaaS

Message In User Function

Deployment

Database

Message Out

FaaS

the problem?

the function is a black box

state

serverless 2.0

realtime database access must be removed to allow
autonomy and reliability of the functions

(guarantees are not possible if we pass in the
entire database to a function, or allowed unbridled

reads)

FaaS
abstracting over communication

Message In

User Function

Deployment

Message Out

stateful serverless
abstracting over state

Message In

User Function

Deployment

Message Out

State In State Out

enter…

what is cloudstate?

cloudstate is a distributed,
clustered and stateful cloud
runtime, providing a zero-ops

experience, with polyglot client
support

(essentially serverless 2.0)

cloudstate

CLOUDSTATE IS OPEN SOURCE,
UTILIZING BEST OF BREED

TECHNOLOGIES, HARNESSING ALL
THEIR POWER, WHILE REMOVING

ALL THEIR COMPLEXITY

cloudstate

•complexities of distributed systems
• managing state, databases, service meshes
• message routing, failover, recovery
• running and operationalizing applications

don’t worry about:

cloudstate

•polyglot:python, java, spring, go, rust, javascript, .net,
swift, scala and more…

• powerful state models: event sourcing, CQRS, key/value, CRUD,
CRDTs

• polydb: SQL, NoSQL, NewSQL, in-memory
• leverages akka, gRPC, knative, GraalVM, running on kubernetes

technical highlights:

–Timothy Keller

“freedom is not so much the absence of restrictions
as finding the right ones, the liberating restrictions.”

one very important constraint

event
sourcing

benefits of event sourcing

• single source of truth with full
history

• allows for memory image (durable in-
memory state)

• avoids object-relational mismatch
• allows subscription to state changes
• mechanical sympathy (single writer
principle)

cloudstate: event sourcing

Command In

User Function/entity

Deployment

Reply Out

Event Log In Events OUt

event sourced functions (entities)

Command

Event

Event
Log

Event

Happy Path

Command

event sourced functions (entities)

Event
Log

REPLAY EventS

SAD Path, RECOVER FROM FAILURE

Command

(and yeah you can still do CRUD)

Message In

User Function/entity

Deployment

Message Out

Snapshot In
(By Entity KEy)

Snapshot out
(By Entity Key)

Kubernetes Pod

Kubernetes Pod

Kubernetes Pod

Cloudstate Proxy
(Akka Sidecar)

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

User Function
(JavaScript, Go, Java,…)

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

cloudstate architecture
Kubernetes PodUser Function

(JavaScript, Go, Java,…)Akka Sidecar

Akka Cluster

Datastore
(Cassandra, Postgres, Spanner,…)

gRPC

Kubernetes PodUser Function
(JavaScript, Go, Java,…)Akka Sidecar

Kubernetes PodUser Function
(JavaScript, Go, Java,…)

Akka Sidecar

Gossip, State replication, Routing

Gossip, State replication, Routing

as a managed service

•Pay as you go:
• on-demand instance creation, passivation and failover
• autoscaling—up and down

• ZeroOps:
• automated message routing
• automated state management
• Automated deployment, provisioning, upgrades

multitenancy

•FaaS:
• inadequate bulkheading: neighbor’s function can hog resources

• cloudstate:
• multitenancy from the ground up via pods
• complete bulkingheading: even at the data level
• complete security due to clear separations

cloudstate architecture

LET’S LOOK
AT SOME
CODE!

ON BEHALF OF
THE

CLOUDSTATE.IO
TEAM, THANKS!

the full sample can be found here:
https://github.com/cloudstateio/python-

support

http://cloudstate.io

