
Extending Python with Rust

Introduction and a hands-on 
demo of writing Python 
extension in Rust



This talk ● Why?

● Why Rust?

● Binginds

● Dynamic library

● Web service example

● Docker example

● Compile and distribute (PIP example)



Why? ● Speed. The dynamic nature of Python means 
it is notoriously slow at some things, and not 
great on parallel calculations.

● Reusability. Why port code when you can use 
it directly?

● Cooperation. If one team writes Python and 
another - Rust, and they need to use each 
other's code.

● Migration. If you want to re-write your entire 
Python codebase to Rust, you could do that 
module by module.



How? ● C extension

● Cython - magic!

● Numba - JIT-compilation



Why Rust? ● Rust is an innovative compiled language 
with an accent on safety.

● Rust is one of the most loved languages 
by developers.

● ...and companies too

● Minimal runtime (e.g. no garbage 
collector)

Yet Rust has a somewhat steep learning curve. 
In many cases, one may want to split their 
codebase, and write some critical code in Rust, 
and some more common code in Python.



Bindings ● Rust-cpython (which we're going to use 
for the examples)

● PyO3 - fork of rust-python, only on 
nightly Rust

● Python as a scripting language in Rust 
programs (not in this talk)

● Cargo - Rust package manager and CLI

● The Rust book and the Cargo book



Dynamic library
● Simple Rust code - just two files

● Will be building a dynamic library - only 
need to set crate-type

● .dll file on Windows, .so on Linux, or .dylib 
on Mac

● Rust-cpython provides wrappers for 
Python

● Building for Mac requires additional 
linker arguments

● Rename to mylib.so

● DEMO



DEMO



Web service ● More "real-world" example

● A Python web-service that calls Rust 
library and returns the result to user

● Will use Flask + the library we just built

● Can run it with “FLASK_APP=main.py 
flask run” but for production, we would 
like more: Continuous 
Integration/Deployment

● Will build a Docker image



Docker ● Will use Gunicorn as a web-server

● Will use a multi-stage build

● The resulting Docker image will not 
contain any Rust artifacts - only a 
compiled binary

● Will build for Linux this time

● DEMO



DEMO



Compile and 
distribute

● What if we want to keep Rust and Python 
code separately?

● A Rust team and a Python team

● Corporate PIP repository

● “pip install mylib”

● Setuptools-rust

● Building from source vs wheels

● Can remove the first, Rust stage from our 
Dockerfile

● DEMO



DEMO



Thanks!

https://github.com/moor84


