
Effective Code Reviews:
The edge between hard and soft skills

Vinícius Gubiani Ferreira



Vinícius Gubiani Ferreira

����





"A software QA activity in which one or several people 
check a program mainly by viewing and reading parts of 
its source code, and they do so after implementation or as 
an interruption of implementation. At least one of the 
persons must not be the code's author.

Wikipedia

TL;DR Version



Once upon a time ...



Often decides to be brutally honest



Due to that, had to find a new job



Or worst: keep his opinions for himself



Code reviews? Why?
● Knowledge Transmission
● Stimulate collective collaboration in projects
● Quick feedback / ensure changes are on the right track
● Stimulate contribution for new PRs and good practices
● Ensure we have good quality on the code product



3 Golden rules for healthy code reviews



Rule number 1:

Don't take any comment as a personal offense



Rule number 2:

Listen to feedbacks



Rule number 3:

Accept the fact that you might be wrong.
Make mistakes is part of being human.



Good practices - Positive feedback

● Good job! / Awesome
● LGTM, IMHO, ...
● Use emojis, memes, ...



Examples









How to check if a PR is good? Which 
metrics should we use?





Good practices - Negative feedback

When you reject a PR, always explain 
the reason you are doing so.



● Be nice always! Have empathy with the PR author

General rules about comments
(especially in negative feedback)

● Raise questions: What if we do it this way? Looks 
more efficient because X, Y, Z.

● Be clear and straight to the point (but still being nice 
and respecting your fellow teammates).

● Use collective words (us, can we, all) instead of 
individual terms (I, you, him).



Checklist - During development

● Isn't your PR getting too much big? Is it possible to 
break it into smaller PRs, easier/faster to review?

● Place style changes (Black/PEP8/iSort) into separate 
commits

● Can I open a PR as a WIP?



Checklist - Before opening a PR

● Did the tests passed on your machine?

● Review your own PR carefully, as you would review 
somebody else's PR. Or as I like to think of ...

● Is it a new feat or fix? Where are the new tests?

● Is the PR title clear? What about the description? How 
about adding a print if a screen was added/changed?



The next programmer is a psycho who 
know where you live



Reviewing PRs: What to look for?

● Tests or pipeline are failing: don't waste your time

● Performance optimizations
● Logic errors
● Words in another language that are not english
● Typos: Comments, tests, variable names, classes, …



Reviewing PRs: What to look for?

● Follow style conventions, project architectural 
guidelines, and good practices adopted by the 
company and the community

● Don't use push force! Use --force-with-lease
● The author doesn't give up: negotiate!
● Commit messages / PR title



To sum it up

Code review comes down to people: find a way to 
express yourself and negotiate about tech 
subjects, without harming anybody



Valeu! / Merci! / Thank you! / Gracias! / Vielen Dank! / 
Спасибо! / 谢谢啦! / ありがと!

www.azion.com

Move to the Edge 🚀



vini.g.fer@gmail.com

vinigfer

vinicius-gubiani-ferreira

vinigfer

Have a question? Please contact me!
#talk-effective-code-reviews


