

Writing
Zenlike
Python

Jason C. McDonald

About Me

Author, “Dead Simple Python”

CEO, Lead Developer
MousePaw Media

CodeMouse92
IndelibleBluePen.com

The Zen of Python
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

The History of the Zen

comp.lang.python circa 1999

PEP 20

import this

Was Tim Serious?

“It was a throwaway python-list post.
But like all great triumphs of
literature, it was written during
commercials breaks while watching
professional wrestling on TV, and
munching on a ham sandwich. All
true!”

-Tim Peters
(to Barry Warsaw, 2020)

Readability
Readability counts.

We write code for people.

We write code for our future self.

We should NOT write code to be clever.

Readability
Readability counts.

"Everyone knows that debugging is
twice as hard as writing a program in
the first place. So if you're as clever
as you can be when you write it, how
will you ever debug it?"

-Brian Kernighan
Co-author, "The C Programming Language"

Obvious
There should be one -- and preferably only one -- obvious way to do it.

Finding the optimal solution.

Obvious once you know it.

One Way or Multiple Ways?

“The funny thing is that while there is a lot of
animosity in the lower ranks, I've actually
been very friendly with Larry Wall and Tom
Christiansen ever since we met five years ago
at the VHLL symposium that Tom organized.”

-Guido van Rossum
Python creator & former BDFL

Obvious
There should be one -- and preferably only one -- obvious way to do it.

Obvious
There should be one -- and preferably only one -- obvious way to do it.

TOOWTDI

There’s Only One Way To Do It (Python)

Prioritizes optimality.

Discovered by experimentation.

Obvious
There should be one -- and preferably only one -- obvious way to do it.

TMTOWTDI

There’s More Than One Way To Do It (Perl)

Prioritizes experimentation.

The goal is optimality.

“Unless You’re Dutch”
Although that way may not be obvious at first unless you're Dutch.

Obvious in retrospect.

We’re not all Core Developers.

The One Obvious Way can evolve.

Beautiful
Beautiful is better than ugly.

Beautiful code is a pleasure to read.

You know it when you see it.

PEP 8 helps!

Beautiful
Beautiful is better than ugly.

def fizz_buzz(max):
 n=-1;r=[]
 while n<max:
 n+=1;s=""
 if n%3==0:s+="fizz"
 if n%5==0:s+="buzz"
 if n%3!=0 and n%5!=0:s=str(n)
 r+=[s]
 return r

def fizz_buzz(max):
 n=-1;r=[]
 while n<max:
 n+=1;s=""
 if n%3==0:s+="fizz"
 if n%5==0:s+="buzz"
 if n%3!=0 and n%5!=0:s=str(n)
 r+=[s]
 return r

Ugly
✗ Poor spacing.

✗ “Crammed” lines.

✗ Over-complicated.

✗ Hard to read.

Beautiful
Beautiful is better than ugly.

def fizz_buzz(max):
 return [
 "fizz" * (not n % 3) +
 "buzz" * (not n % 5)
 or str(n)
 for n in range(max + 1)
]

def fizz_buzz(max):
 return [
 "fizz" * (not n % 3) +
 "buzz" * (not n % 5)
 or str(n)
 for n in range(max + 1)
]

Beautiful
✔Good spacing.

✔One “thought” per line.

✔Idiomatic.

✔Easy to read.

Explicit
Explicit is better than implicit.

Surprises are bugs-in-waiting.

Implementation comments are failures.

(Intent comments are good!)

Naming is hard...but important.

“There are only two hard things in Computer
Science: cache invalidation and naming
things.” -Phil Karlton

Netscape Developer

Explicit
Explicit is better than implicit.

from constants import *

def parse(data):
 return data.split(SEP)[0]

with open("file.txt", 'r') as file:
 data = [
 parse(line)
 for line in file
]

from constants import *

def parse(data):
 return data.split(SEP)[0]

with open("file.txt", 'r') as file:
 data = [
 parse(line)
 for line in file
]

Implicit
✗ Vague names.

✗ Where is SEP from?

✗ What does this do??!?

Explicit
Explicit is better than implicit.

import constants

def parse_name(line):
 return line.split(constants.SEP)[0]

Retrieve all speaker names from file.
with open("file.txt", 'r') as file:
 speakers = [
 parse_name(line)
 for line in file
]

import constants

def parse_name(line):
 return line.split(constants.SEP)[0]

Retrieve all speaker names from file.
with open("file.txt", 'r') as file:
 speakers = [
 parse_name(line)
 for line in file
]

✔Names = Purpose

✔Clear import.

✔Obvious intent.

✔Useful comment.

Explicit
Explicit is better than implicit.

Explicit

Namespaces
Namespaces are one honking great idea -- let's do more of those!

import * is evil!

Shadowing is pesky.

Where did x come from, anyway?

from door import *
from window import *

print("Knock, knock.")
open()
print("No solicitors!")
slam()
post_in_window("No Solicitors")

from door import *
from window import *

print("Knock, knock.")
open()
print("No solicitors!")
slam()
post_in_window("No Solicitors")

No Namespaces
✗ Shadowing.

✗ Unclear intent.

✗ Where do I edit slam()?

✗ If we import * this...

Namespaces
Namespaces are one honking great idea -- let's do more of those!

import door
import window

print("Knock, knock.")
door.open()
print("No solicitors!")
door.slam()
window.post_in_window("No Solicitors")

import door
import window

print("Knock, knock.")
door.open()
print("No solicitors!")
door.slam()
window.post_in_window("No Solicitors")

✔No shadowing.

✔Clear intention.

✔Clear origin.

Namespaces

Namespaces
Namespaces are one honking great idea -- let's do more of those!

Refuse to Guess
In the face of ambiguity, refuse the temptation to guess.

Guessing leads to bugs.

Look it up!

Refactor as needed.

Again: “Explicit is better than implicit.”

Simple
Simple is better than complex.

Don’t be clever.

The “basics” are your friends.

Simplicity takes skill.

import sys

def get_input():
 r = input("Hash: ")
 if r.lower() == "quit":
 sys.exit()
 return r

while True:
 string = get_input()
 print(f"{string} => {hash(string)}")

import sys

def get_input():
 r = input("Hash: ")
 if r.lower() == "quit":
 sys.exit()
 return r

while True:
 string = get_input()
 print(f"{string} => {hash(string)}")

Complex
✗ Clever.

✗ DRY...nearing arid.

✗ Not bad, but...

Simple
Simple is better than complex.

while True:
 s = input("Hash: ")
 if s.lower() == "quit":
 break
 else:
 print(f"{s} => {hash(s)}")

while True:
 s = input("Hash: ")
 if s.lower() == "quit":
 break
 else:
 print(f"{s} => {hash(s)}")

Simple
✔Hooray for the classics!

✔Easy to understand.

✔Easy to maintain.

Simple
Simple is better than complex.

Complex
Complex is better than complicated.

Not everything is simple.

Elegance is not obfuscation.

Complex takes more time to read, not more effort.

def find_gcf(n1, n2):
 factors1 = set()
 for f in range(1, n1 + 1):
 if n1 % f == 0:
 factors1.add(f)

 factors2 = set()
 for f in range(1, n2 + 1):
 if n2 % f == 0:
 factors2.add(f)

 factors_common = factors1 & factors2
 return max(factors_common)

def find_gcf(n1, n2):
 factors1 = set()
 for f in range(1, n1 + 1):
 if n1 % f == 0:
 factors1.add(f)

 factors2 = set()
 for f in range(1, n2 + 1):
 if n2 % f == 0:
 factors2.add(f)

 factors_common = factors1 & factors2
 return max(factors_common)

Complicated
✗ Too many steps.

✗ Obfuscated logic.

✗ Ignores syntactic sugar.

Complex
Complex is better than complicated.

def find_gcf(n1, n2):
 factors = {
 factor
 for factor
 in range(1, min(n1, n2) + 1)
 if not n1 % factor
 and not n2 % factor
 }
 return max(factors)

def find_gcf(n1, n2):
 factors = {
 factor
 for factor
 in range(1, min(n1, n2) + 1)
 if not n1 % factor
 and not n2 % factor
 }
 return max(factors)

Complex

Complex
Complex is better than complicated.

✔Tightened logic.

✔Clear intention.

✔Utilize syntactic sugar.

Easy to Explain
If the implementation is hard to explain, it's a bad idea.

Simple, or at least complex.

Obvious — to the reader.

Again: Don’t be clever.

Easy to Explain
If the implementation is easy to explain, it may be a good idea.

All good code is simple (or reasonably complex.)

Not all simple code is good.

All good code is obvious.

Not all obvious code is good.

Flat
Flat is better than nested.

Nesting is hard to follow.

Nesting is easy to get wrong.

(Except in data.)

alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

for r in ('WK'):
 for l1 in alpha:
 for l2 in alpha:
 for l3 in alpha:
 print(f"{r}{l1}{l2}{l3}")

alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

for r in ('WK'):
 for l1 in alpha:
 for l2 in alpha:
 for l3 in alpha:
 print(f"{r}{l1}{l2}{l3}")

Nested
✗ Prone to indent errors.

✗ Hard to reason about.

✗ Line limits now hurt!

Flat
Flat is better than nested.

import itertools

alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

for r, l1, l2, l3 in itertools.product(
 'WK', alpha, alpha, alpha)
):
 print(f"{r}{l1}{l2}{l3}")

import itertools

alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

for r, l1, l2, l3 in itertools.product(
 'WK', alpha, alpha, alpha)
):
 print(f"{r}{l1}{l2}{l3}")

Flat

Flat
Flat is better than nested.

✔Indent errors unlikely.

✔Easy to reason about.

✔Line limits okay.

Sparse
Sparse is better than dense.

𝄽

Sparse
Sparse is better than dense.

𝄽
“The music is not in the

notes, but in the
silence between.”

-Wolfgang Amadeus Mozart
Composer

Sparse
Sparse is better than dense.

Whitespace lets the code “breathe.”

Whitespace organizes code.

Beware one-liners.

import math
def is_palindrome(s):
 s=''.join(filter(str.isalpha,s.lower()))
 half=math.floor(len(s)/2)
 for i in range(half):
 if s[i]!=s[-(i+1)]:return False
 return True

import math
def is_palindrome(s):
 s=''.join(filter(str.isalpha,s.lower()))
 half=math.floor(len(s)/2)
 for i in range(half):
 if s[i]!=s[-(i+1)]:return False
 return True

Dense
✗ Do I really need to say it?

Sparse
Sparse is better than dense.

import math

def is_palindrome(s):
 s = ''.join(
 filter(str.isalpha, s.lower())
)

 half = math.floor(len(s) / 2)
 for i in range(half):
 if s[i] != s[-(i + 1)]:
 return False

 return True

import math

def is_palindrome(s):
 s = ''.join(
 filter(str.isalpha, s.lower())
)

 half = math.floor(len(s) / 2)
 for i in range(half):
 if s[i] != s[-(i + 1)]:
 return False

 return True

Sparse
✔Easy to parse.

✔Logical “chunks”.

✔Vertical space is there

to use!

Sparse
Sparse is better than dense.

Errors
Errors should never pass silently.

An Error is an Exceptional State

Exceptional State requires Intelligent Intervention

No Intelligent Intervention = STOP!

‘Diaper Antipattern’

In the harsh and unforgiving real world, however, the
source may be tens, hundreds, or even thousands of
lines away, buried under umpteen layers of
abstractions in a different module or, worse, in some
third-party library, and when it fails, just as diapers
fail, it will fail in the small hours of the night when we
would rather be sleeping, and someone important
will make an awful fuss about it. It will not be fun.

-Mike Pirnat
“How to Make Mistakes in Python”

Errors
Errors should never pass silently.

Explicitly Silenced
Unless explicitly silenced.

Intelligent Intervention already applied?

Exceptional State has been resolved.

That specific error may be silenced.

“Explicit is better than implicit.”

Now
Now is better than never.

The Lie: “I’ll Do It Later”

More delay = more refactoring

Get it over with…

...or at least pave the way!

Never
Although never is often better than *right* now.

Other Lie: “It’ll Only Take a Minute”

The urgency of the insignificant.

Beware creeping featurism.

Special Cases
Special cases aren't special enough to break the rules.

“My situation is unique.”

Yes, like every other situation.

If I make an exception for you...

Practicality
Although practicality beats purity.

Rules exist to establish order.

Don’t lose the end in the means.

The end grants the exception.

()
“20...counting the one I'm leaving for Guido to fill in.”

The Zen is eternally unfinished.

Python is eternally unfinished.

“Pythonic” contains The Zen.

The Zen cannot contain “Pythonic.”

Writing
Zenlike
Python

Jason C. McDonald

