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Traditional anonymisation overtaken by 21st Century data
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• Traditional anonymisation is crucial to safeguard 
sensitive data

• Risk of de-anonymisation when linked with 
external datasets

• Many examples of attacks on release of 
“anonymised” data

• Statistics are also vulnerable to database 
reconstruction and model inversion attacks



Privacy for 21st Century Big Data: Differential Privacy
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• Individual privacy preserved

• Population trends still observable

• Privacy is future proof

• Queries have a privacy budget ϵ

Key Idea: Blur the data

AI, Privacy and Security Team, Dublin Research Lab / EuroPython, July 2020 / © 2020 IBM Corporation



Example use-case
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Our Approach
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• Python is popular for machine learning

• NumPy and Scikit-Learn are standard for data 
analytics and machine learning

• Require a virtually identical user experience to 
Numpy and Scikit-Learn

• Default privacy parameter setting

• Ensure users are already familiar with diffprivlib
before using it



Diffprivlib in a nutshell
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• Machine Learning with 
differential privacy

• No expertise required

• Open Source – free to use 
and modify

• Easy installation

• Integration with popular 
packages (Scikit-learn, 
NumPy)

• Easily integrated within 
existing applications



Modules: Mechanisms, Models, Tools, Accountant
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• Primitives for noise addition to achieve 
differential privacy

• Used under-the-hood in all tools/models
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• Machine learning models with differential privacy built-in

• Each model inherits its Scikit-Learn equivalent as its 
parent class

Modules: Mechanisms, Models, Tools, Accountant
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• NumPy functions for simple data analytics

• Histograms are especially useful in 
differential privacy

Modules: Mechanisms, Models, Tools, Accountant
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• Track privacy budget spend across multiple 
calls to diffprivlib

• Advanced composition techniques ensure 
better accuracy with the same privacy budget

Modules: Mechanisms, Models, Tools, Accountant



Demo
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Additional Resources
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• Github repository:
github.com/IBM/differential-privacy-library

• Documentation:
diffprivlib.readthedocs.io

• Installation:
pip install diffprivlib

https://github.com/IBM/differential-privacy-library
https://diffprivlib.readthedocs.io/en/latest/
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Back-up slides
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A simple example
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Participant
Actual 
answer

Noisy answer

A 0 → 1

B 0 → 0

C 1 → 0

D 1 → 1

⁞ ⁞ ⁞

Z 1 → 0

Total 17 → 16

• Individual values are not reliable

• No way to reconstruct originals

• Aggregate statistics still 
representative

Model parameters control 
privacy/accuracy trade-off

Published data
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What is Differential Privacy?
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• “SI Unit” for privacy of data release algorithm

• Provides an explicit, objective mathematical way to 
measure privacy

• Symbol: 𝜖

• Quantity: Stochastic privacy

Differential privacy is a 

measurement of privacy

𝜖 = 0
Perfect privacy

(Zero util ity)

𝜖 = ∞
Perfect utility

(Zero privacy)

𝜖
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Solutions are use-case driven
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• No silver bullet

• Toolbox of solutions needed for every problem

• Key challenge: Preserve privacy and maintain 
accuracy

Differential Privacy Checklist:

• Large quantity of data

• Tolerance to error

• Appreciable privacy risk

Weak use-case: Doctor's access to a patient's health records (errors not tolerable)

Strong use-case: Data scientist's access to a hospital's patient dataset



Who do we trust with data?
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Data subjects Data controller
Data 

processor(s)
Data 

consumer(s)

⁞ ⁞ ⁞
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Trust boundaries
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State-of-the-art: Literature
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• Differentially private solutions to machine learning 
algorithms already exist

• Each model requires a custom solution to fit the 
inner workings of that model

• Non-iterative models suit best

Existing solutions include:
• Linear regression
• Logistic regression
• Decision trees
• Random forest
• Principal Component Analysis
• Support Vector Machines
• K-means clustering
• Naïve Bayes



State-of-the-art: Code
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• Many distinct libraries

• No common codebase, no standard syntax

• Many different languages

• ML “libraries” implementing a single algorithm


