
Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Full Stack Type Safety

Szymon Pyżalski

Egnyte Inc.

Europython 2020

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Outline

Premise

Typing basics

Our typical stack

Annotations and ORM

Enforcing the contract

Summary

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Our goal

• Catch typing errors ASAP (not later than in CI)
• Catch typing errors that span layers of stack

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Our goal

• Catch typing errors ASAP (not later than in CI)

• Catch typing errors that span layers of stack

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Our goal

• Catch typing errors ASAP (not later than in CI)
• Catch typing errors that span layers of stack

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Problems

• Type annotation system in Python is new and immature
• Various layers of stack feature different typing paradigms
• We tend to test layers in separation

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Problems

• Type annotation system in Python is new and immature

• Various layers of stack feature different typing paradigms
• We tend to test layers in separation

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Problems

• Type annotation system in Python is new and immature
• Various layers of stack feature different typing paradigms

• We tend to test layers in separation

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Problems

• Type annotation system in Python is new and immature
• Various layers of stack feature different typing paradigms
• We tend to test layers in separation

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Weak vs strong

Weak typing A value can be misinterpreted unless we care about
the type by ourselves.

Strong typing We are protected from misinterpretations by the
type system.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Weak vs strong

Weak typing A value can be misinterpreted unless we care about
the type by ourselves.

Strong typing We are protected from misinterpretations by the
type system.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Weak vs strong

Weak typing A value can be misinterpreted unless we care about
the type by ourselves.

Strong typing We are protected from misinterpretations by the
type system.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Weak typing

include <stdio.h>
short int fun(int* x) {

short int y = *(short int*)x;
return y + 1;

}

int main(int argc, char** argv) {
int a = -10;
int b = 777777;
printf("%u\n", a); // prints: 4294967286
printf("%d\n", fun(&b)); // prints: -8654

}

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Static vs dynamic

Static typing The types of objects can be determined during
compile time.

Dynamic typing The types of objects are determined during
runtime.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Static vs dynamic

Static typing The types of objects can be determined during
compile time.

Dynamic typing The types of objects are determined during
runtime.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Static vs dynamic

Static typing The types of objects can be determined during
compile time.

Dynamic typing The types of objects are determined during
runtime.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Dynamic typing in python

def sum(xs, init):
result = init
for x in xs:
result += x

return result

print(sum([1, 2, 3], 0)) # prints 6
print(sum({’a’: ’b’, ’c’: ’d’}, ’Keys: ’)) # prints: Keys: ac

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Static typing with inference

package main

import "fmt";

func fact(n int) int {
result := 1
for i := 1; i <=n; i++ {

result *= i
}
return result

}

func main() {
x := 10
y := fact(5)
fmt.Println(x)
fmt.Println(y)

}

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Strict vs loose

Strict typing Type conversions must be explicit. Type mismatch
exceptions.

Loose typing Type conversions can be implicit.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Strict vs loose

Strict typing Type conversions must be explicit. Type mismatch
exceptions.

Loose typing Type conversions can be implicit.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Strict vs loose

Strict typing Type conversions must be explicit. Type mismatch
exceptions.

Loose typing Type conversions can be implicit.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Stricter than Python

import Data.String.Utils (join)

list2Str :: [[Char]] -> [Char]
list2Str xs = if xs then "No elements" else (join "," xs) -- Error

main = do
putStrLn $ list2Str []
putStrLn 10 -- Error

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Looser than Python

1 + ’a’ // ’1a’
{} + 2 // 0
’abc’ + [’d’, ’e’, ’f’] // "abcd,e,f"
{} + ’z’ // NaN
{} + {} // NaN
{} + [] // 0
[] + {} // "[object Object]"

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Duck vs ???

Duck typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

??? Classes must inherit from a class in order to be
compaticle, or at least be marked as implementing
the protocol.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Duck vs ???

Duck typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

??? Classes must inherit from a class in order to be
compaticle, or at least be marked as implementing
the protocol.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Duck vs ???

Duck typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

??? Classes must inherit from a class in order to be
compaticle, or at least be marked as implementing
the protocol.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Duck vs platonic

Duck typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

Platonic typing Classes must inherit from a class in order to be
compaticle, or at lease be marked as implementing
the protocol.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Structural vs nominal

Structural typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

Nominal typing Classes must inherit from a class in order to be
compaticle, or at lease be marked as implementing
the protocol.

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say

throw raise
array list
list deque
blatant abuse of exceptions StopIteration
interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say
throw raise

array list
list deque
blatant abuse of exceptions StopIteration
interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say
throw raise
array list

list deque
blatant abuse of exceptions StopIteration
interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say
throw raise
array list
list deque

blatant abuse of exceptions StopIteration
interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say
throw raise
array list
list deque
blatant abuse of exceptions StopIteration

interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say
throw raise
array list
list deque
blatant abuse of exceptions StopIteration
interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

The pythonish language

They say We say
throw raise
array list
list deque
blatant abuse of exceptions StopIteration
interfaces protocols

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Static but duck-typed
package main
import "fmt"

type Duck interface {
swim(x int, y int)
quack() string

}

type Mallard struct {
x, y int

}

func (m *Mallard) swim(x, y int) {
m.x += x
m.y += y

}

func (m Mallard) quack() string {
return "Quack quaaaack"

}

func swimThenQuack(d Duck) {
d.swim(1, 1)
fmt.Println(d.quack())

}

func main() {
donald := Mallard{x: 0, y: 0}
swimThenQuack(&donald)
fmt.Println(donald)

}

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Typing models

• Strong vs weak typing
• Static vs dynamic typing
• Strict vs loose typing
• Structural vs nominal typing

• Free vs fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Typing models

• Strong vs weak typing
• Static vs dynamic typing
• Strict vs loose typing
• Structural vs nominal typing
• Free vs fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Our typical stack

Javascript
Strong
Very loose
Dynamic
Structural
Free attributes
Python
Strong
Strict
Dynamic
Structural
Free attributes
SQL

Weak (foreign keys)
Loose
Static
Nominal

Fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Our typical stack

Javascript
Strong
Very loose
Dynamic
Structural
Free attributes

Python
Strong
Strict
Dynamic
Structural
Free attributes

Models
Strong
Strict
Static
Nominal

Fixed attributes
SQL

Weak (foreign keys)

Loose
Static
Nominal

Fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Weakness of SQL foreign keys

UPDATE books set author_id = (
SELECT id FROM publishers
WHERE name="Chilton Books"

);

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

ORM improving type safety

b = Book.objects.get(id=1)
b.author = Publisher.objects.get(name=’Chilton Books’)

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

mypy enters the game

Javascript
Strong
Very loose
Dynamic
Structural
Free attributes

mypy
Strong
String
Static

Preference for nominal
Fixed attributes

Python
Strong
Strict
Dynamic
Structural
Free attributes

Models
Strong
Strict
Static
Nominal

Fixed attributes
SQL

Weak (foreign keys)

Loose
Static
Nominal

Fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Demo 1

Django and mypy working together

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

mypy and Django pros and cons

• Pro: Recognizes the relationship between column types and
python types
• Pro: Recognizes the idea of null
• Con: Can’t handle problems with incomplete data
• Con: Requires a mypy plugin

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

mypy and Django pros and cons

• Pro: Recognizes the relationship between column types and
python types

• Pro: Recognizes the idea of null
• Con: Can’t handle problems with incomplete data
• Con: Requires a mypy plugin

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

mypy and Django pros and cons

• Pro: Recognizes the relationship between column types and
python types
• Pro: Recognizes the idea of null

• Con: Can’t handle problems with incomplete data
• Con: Requires a mypy plugin

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

mypy and Django pros and cons

• Pro: Recognizes the relationship between column types and
python types
• Pro: Recognizes the idea of null
• Con: Can’t handle problems with incomplete data

• Con: Requires a mypy plugin

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

mypy and Django pros and cons

• Pro: Recognizes the relationship between column types and
python types
• Pro: Recognizes the idea of null
• Con: Can’t handle problems with incomplete data
• Con: Requires a mypy plugin

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Considering the JSON

Javascript
Strong
Very loose
Dynamic
Structural
Free attributes JSON

No typing above primitivesmypy
Strong
String
Static

Preference for nominal
Fixed attributes

Python
Strong
Strict
Dynamic
Structural
Free attributes

Models
Strong
Strict
Static
Nominal

Fixed attributes
SQL

Weak (foreign keys)

Loose
Static
Nominal

Fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

One solution

Typescript
Strong
Strict
Static
Structural

Fixed attributes JSON
No typing above primitives

OpenAPI3
Schema
Tests

Code generation

mypy
Strong
String
Static

Preference for nominal
Fixed attributes

Python
Strong
Strict
Dynamic
Structural
Free attributes

Models
Strong
Strict
Static
Nominal

Fixed attributes
SQL

Weak (foreign keys)

Loose
Static
Nominal

Fixed attributes

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Demo 2

Enforcing the contract

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Takeaways

• There are tools for code safety enforcement in a Python stack
that are worth consideration
• They are not yet perfect and we can’t expect to catch all

errors

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Takeaways

• There are tools for code safety enforcement in a Python stack
that are worth consideration

• They are not yet perfect and we can’t expect to catch all
errors

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Takeaways

• There are tools for code safety enforcement in a Python stack
that are worth consideration
• They are not yet perfect and we can’t expect to catch all

errors

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Future can bring

• Support for more patterns in type annotations without plugins
• Tools based on code annotations instead of descriptors (

strawberry-graphql, pydantic,)

https://strawberry.rocks/
https://pydantic-docs.helpmanual.io/

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Future can bring

• Support for more patterns in type annotations without plugins

• Tools based on code annotations instead of descriptors (
strawberry-graphql, pydantic,)

https://strawberry.rocks/
https://pydantic-docs.helpmanual.io/

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Future can bring

• Support for more patterns in type annotations without plugins
• Tools based on code annotations instead of descriptors (

strawberry-graphql, pydantic,)

https://strawberry.rocks/
https://pydantic-docs.helpmanual.io/

Premise Typing basics Our typical stack Annotations and ORM Enforcing the contract Summary

Tools used

• django-stubs A distribution of code annotations for django
complete with a mypy plugin
• spectacular A schema generator for django-rest-framework
• openapi-generator Code generator that can create boilerplate

code for several languages/frameworks based on OpenAPI3.

https://pypi.org/project/django-stubs/
https://drf-spectacular.readthedocs.io/en/latest/index.html
https://openapi-generator.tech/

	Premise
	Typing basics
	Our typical stack
	Annotations and ORM
	Enforcing the contract
	Summary

