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Weak vs strong

Weak typing A value can be misinterpreted unless we care about
the type by ourselves.

Strong typing We are protected from misinterpretations by the
type system.
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Weak typing

# include <stdio.h>
short int fun(int* x) {

short int y = *(short int*)x;
return y + 1;

}

int main(int argc, char** argv) {
int a = -10;
int b = 777777;
printf("%u\n", a); // prints: 4294967286
printf("%d\n", fun(&b)); // prints: -8654

}
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Static typing The types of objects can be determined during
compile time.

Dynamic typing The types of objects are determined during
runtime.
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Dynamic typing in python

def sum(xs, init):
result = init
for x in xs:
result += x

return result

print(sum([1, 2, 3], 0)) # prints 6
print(sum({’a’: ’b’, ’c’: ’d’}, ’Keys: ’)) # prints: Keys: ac
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Static typing with inference

package main

import "fmt";

func fact(n int) int {
result := 1
for i := 1; i <=n; i++ {

result *= i
}
return result

}

func main() {
x := 10
y := fact(5)
fmt.Println(x)
fmt.Println(y)

}
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Strict vs loose

Strict typing Type conversions must be explicit. Type mismatch
exceptions.

Loose typing Type conversions can be implicit.
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Stricter than Python

import Data.String.Utils (join)

list2Str :: [[Char]] -> [Char]
list2Str xs = if xs then "No elements" else (join "," xs) -- Error

main = do
putStrLn $ list2Str []
putStrLn 10 -- Error
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Looser than Python

1 + ’a’ // ’1a’
{} + 2 // 0
’abc’ + [’d’, ’e’, ’f’] // "abcd,e,f"
{} + ’z’ // NaN
{} + {} // NaN
{} + [] // 0
[] + {} // "[object Object]"
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Duck vs ???

Duck typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

??? Classes must inherit from a class in order to be
compaticle, or at least be marked as implementing
the protocol.
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Duck vs platonic

Duck typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

Platonic typing Classes must inherit from a class in order to be
compaticle, or at lease be marked as implementing
the protocol.
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Structural vs nominal

Structural typing Interfaces Protocols are implemented implicitly.
Object is compatible with a protocol if it implements
required methods.

Nominal typing Classes must inherit from a class in order to be
compaticle, or at lease be marked as implementing
the protocol.
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The pythonish language

They say We say

throw raise
array list
list deque
blatant abuse of exceptions StopIteration
interfaces protocols
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Static but duck-typed
package main
import "fmt"

type Duck interface {
swim(x int, y int)
quack() string

}

type Mallard struct {
x, y int

}

func (m *Mallard) swim(x, y int) {
m.x += x
m.y += y

}

func (m Mallard) quack() string {
return "Quack quaaaack"

}

func swimThenQuack(d Duck) {
d.swim(1, 1)
fmt.Println(d.quack())

}

func main() {
donald := Mallard{x: 0, y: 0}
swimThenQuack(&donald)
fmt.Println(donald)

}
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Our typical stack

Javascript
Strong
Very loose
Dynamic
Structural
Free attributes
Python
Strong
Strict
Dynamic
Structural
Free attributes
SQL

Weak (foreign keys)
Loose
Static
Nominal

Fixed attributes
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Weakness of SQL foreign keys

UPDATE books set author_id = (
SELECT id FROM publishers
WHERE name="Chilton Books"

);
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ORM improving type safety

b = Book.objects.get(id=1)
b.author = Publisher.objects.get(name=’Chilton Books’)
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mypy enters the game

Javascript
Strong
Very loose
Dynamic
Structural
Free attributes

mypy
Strong
String
Static

Preference for nominal
Fixed attributes

Python
Strong
Strict
Dynamic
Structural
Free attributes

Models
Strong
Strict
Static
Nominal

Fixed attributes
SQL

Weak (foreign keys)

Loose
Static
Nominal

Fixed attributes
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Demo 1

Django and mypy working together
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mypy and Django pros and cons

• Pro: Recognizes the relationship between column types and
python types
• Pro: Recognizes the idea of null
• Con: Can’t handle problems with incomplete data
• Con: Requires a mypy plugin
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Considering the JSON
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One solution

Typescript
Strong
Strict
Static
Structural

Fixed attributes JSON
No typing above primitives

OpenAPI3
Schema
Tests

Code generation
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Demo 2

Enforcing the contract
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Takeaways

• There are tools for code safety enforcement in a Python stack
that are worth consideration
• They are not yet perfect and we can’t expect to catch all

errors
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Future can bring

• Support for more patterns in type annotations without plugins
• Tools based on code annotations instead of descriptors (

strawberry-graphql, pydantic, )

https://strawberry.rocks/
https://pydantic-docs.helpmanual.io/
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Tools used

• django-stubs A distribution of code annotations for django
complete with a mypy plugin
• spectacular A schema generator for django-rest-framework
• openapi-generator Code generator that can create boilerplate

code for several languages/frameworks based on OpenAPI3.

https://pypi.org/project/django-stubs/
https://drf-spectacular.readthedocs.io/en/latest/index.html
https://openapi-generator.tech/
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