
Pluggable Architecture
Aly Sivji

@CaiusSivjus

I’m Aly Sivji. @CaiusSivjus on

https://twitter.com/CaiusSivjus

ChiPy.org

https://www.chipy.org

bit.ly/chipy-tube

on

http://bit.ly/chipy-tube

breathe

Pluggable Architecture

Plugins are software
components that extend or
enhance an existing program

Plugin

Extension Add-on

Benefits

● New features are easier to develop
○

Benefits

● New features are easier to develop
○

● Separation of Concerns

Benefits

● New features are easier to develop
○

● Separation of Concerns
○

● Third-party developers can extend your app

Benefits

Trade-offs

● Upfront design cost
○
○
○

Trade-offs

● Upfront design cost
○

● Additional complexity inside core application
○
○

Trade-offs

Write a third-party plugin from scratch

What this talk is not...

Doug Hellman - Dynamic Code Patterns: Extending Your Applications with Plugins

https://www.youtube.com/watch?v=7K72DPDOhWo

Rose Judge - Plug-in to Python: Extending your applications through the use of plugins

https://youtu.be/9V7n1SUEl5g?t=165

Motivating Example:

Generate API Documentation

FalconFramework.org

https://falconframework.org/

github.com/marshmallow-code/apispec

https://github.com/marshmallow-code/apispec

github.com/marshmallow-code/apispec

https://github.com/marshmallow-code/apispec

github.com/marshmallow-code/apispec

https://github.com/marshmallow-code/apispec

github.com/marshmallow-code/apispec

https://github.com/marshmallow-code/apispec

Anatomy of a Plugin System

Require host application

Communication channel between host
and plugin

Register with the host application

Loaded dynamically at runtime

Respond when called by the host
application

Designing a Plugin System

Plugin System Checklist

❏ Requires host application

❏ Communication channel between host and plugin

❏ Register with the host application

❏ Load plugins dynamically at runtime

❏ Respond when called upon by the host application

Case Study: Git Stats

Open Issues Open Pull Requests

Popularity

Last Activity

$ python cli.py --help

usage: cli.py [-h] --url URL

Fetch statistics from Online Git Repo

optional arguments:

 -h, --help show this help message and exit

 --url URL URL to repository: https://addr..

$ python cli.py --url
https://github.com/alysivji/falcon-apispec

Description: apispec plugin that generates
OpenAPI specification (aka
Swagger Docs) for Falcon web
applications.

Stars: 29
Forks: 14
Open Issues: 3
Last Activity: 2020-05-22 18:08:12+00:00

Git Stats MVP Requirements
● Support GitHub and GitLab upon release

○ Will have to eventually support BitBucket
■

● Identify provider given URL
■

● Use API to download statistics

Host
Application

>>> # https://github.com/alysivji/falcon-apispec
>>> project = RepoDetails("alysivji", "falcon-apispec")
>>> project
RepoDetails(organization='alysivji', repo='falcon-apispec')

>>> stats = RepoStatistics(5723246, "apispec plugin for
Falcon", 29, 14, 3, yesterday)

>>> stats
RepoStatistics(id=5723246, description='apispec plugin for
Falcon', stars=29, forks=14, open_issues=3,
last_activity=datetime.datetime(2020, 6, 14, 10, 48, 1,
165391))

Description: apispec plugin that generates
OpenAPI specification (aka
Swagger Docs) for Falcon web
applications.

Stars: 29
Forks: 14
Open Issues: 3
Last Activity: 2020-05-22 18:08:12+00:00

PluginHost
Application

Host
Application

Host
Application

Host
Application

Description: apispec plugin that generates
OpenAPI specification (aka
Swagger Docs) for Falcon web
applications.

Stars: 29
Forks: 14
Open Issues: 3
Last Activity: 2020-05-22 18:08:12+00:00

Host
Application

Host
Application

Recall: Plugin System Checklist

❏ Requires host application

❏ Communication channel between host and plugin

❏ Register with the host application

❏ Load plugins dynamically at runtime

❏ Respond when called upon by the host application

❏ Requires host application

Plugin System Checklist

❏ Requires host application

Plugin System Checklist

✓ Requires host application

Plugin System Checklist

❏ Communication channel between host and plugin

Plugin System Checklist

❏ Communication channel between host and plugin

Plugin System Checklist

✓ Communication channel between host and plugin

Plugin System Checklist

❏ Register with the host application

Plugin System Checklist

❏ Register with the host application

Plugin System Checklist

✓ Register with the host application

Plugin System Checklist

❏ Loaded dynamically at runtime

Plugin System Checklist

❏ Loaded dynamically at runtime

Plugin System Checklist

✓ Loaded dynamically at runtime

Plugin System Checklist

❏ Respond when called upon by the host application

Plugin System Checklist

✓ Respond when called upon by the host application

Plugin System Checklist

Plugin System Checklist

✓ Requires host application

✓ Communication channel between host and plugin

✓ Register with the host application

✓ Load plugins dynamically at runtime

✓ Respond when called upon by the host application

Plugin System Checklist

✓ Requires host application

✓ Communication channel between host and plugin

✓ Load plugins dynamically at runtime

✓ Register with the host application

✓ Respond when called upon by the host application

Plugin Systems in the Wild

● Custom Model Fields
● Custom Lookups
● Custom Storage System
● Custom Cache Backend
● Custom Tags and Templates
● Custom Management Commands
● Custom Auth
● Custom User Model
● Writing Your Own Middleware
● Django Signals

○ READ THIS FIRST

Extending Django...

https://docs.djangoproject.com/en/3.0/howto/custom-model-fields/
https://docs.djangoproject.com/en/3.0/howto/custom-lookups/
https://docs.djangoproject.com/en/3.0/howto/custom-file-storage/
https://docs.djangoproject.com/en/3.0/topics/cache/#using-a-custom-cache-backend
https://docs.djangoproject.com/en/3.0/howto/custom-template-tags/
https://docs.djangoproject.com/en/3.0/howto/custom-management-commands/
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/
https://docs.djangoproject.com/en/3.0/topics/auth/customizing/#substituting-a-custom-user-model
https://docs.djangoproject.com/en/3.0/topics/http/middleware/#writing-your-own-middleware
https://docs.djangoproject.com/en/3.0/topics/signals/
https://lincolnloop.com/blog/django-anti-patterns-signals/

Writing Reusable Applications

https://docs.djangoproject.com/en/3.0/intro/reusable-apps/

Writing Custom Middleware -- Django

Middleware is a framework of
hooks into Django’s
request/response processing.

SecurityMiddleware

SessionMiddleware

CsrfViewMiddleware

AuthenticationMiddleware

HttpRequest HttpResponse

view function

● Custom Commands

● Flask Extensions

● Modular Applications with Blueprints

● Custom Middleware

Extending Flask...

https://flask.palletsprojects.com/en/1.1.x/cli/#custom-commands
https://flask.palletsprojects.com/en/1.1.x/extensiondev/
https://flask.palletsprojects.com/en/1.1.x/blueprints/

Writing Custom Middleware -- Flask

WSGI middleware to wrap your Flask instances
and introduce changes at the layer between
your Flask application and your HTTP server.

Extending pytest...

● Pytest Fixtures

● Hooks

pytest Fixture Model

● Test fixtures set up the test environment and return it to its original state
■

pytest Fixture Model

● Test fixtures set up the test environment and return it to its original state
■

● Fixtures are functions pytest runs before and after tests
○ Decorated with @pytest.fixture

■

pytest Fixture Model

● Test fixtures set up the test environment and return it to its original state
■

● Fixtures are functions pytest runs before and after tests
○ Decorated with @pytest.fixture

■

● Can inject fixtures into test function as input arguments
○ Searches current module then conftest.py

■

pytest Fixture Model

● Test fixtures set up the test environment and return it to its original state
■

● Fixtures are functions pytest runs before and after tests
○ Decorated with @pytest.fixture

■

● Can inject fixtures into test function as input arguments
○ Searches current module then conftest.py

■

● Fixture Use Cases
○ Setting up database to preconfigured state; cleaning up after tests are run
○ Monkeypatching external dependency with a known value for duration of test
○ Adding Function Arguments to pytest Fixtures aka Factories as Fixtures
○

pytest Fixture Model

https://alysivji.github.io/pytest-fixures-with-function-arguments.html
https://docs.pytest.org/en/latest/fixture.html#factories-as-fixtures

pytest Hooks

● Hooks identify points where application can be extended
○ Developers need to think about this when designing their plugin system

■

Hook-based Plugins

Hook-based Plugins
● Hooks identify points where application can be extended

○ Developers need to think about this when designing their plugin system
■

● When the host program loads, the enabled plugins are registered for the
hooks they care about

■

● Hooks identify points where application can be extended
○ Developers need to think about this when designing their plugin system

■

● When the host program loads, the enabled plugins are registered for the
hooks they care about

■

● When hook is triggered, all functions registered for a hook get notified

Hook-based Plugins

Writing a pytest Hook Plugin

https://docs.pytest.org/en/stable/reference.html#id53

Writing a pytest Hook Plugin
● Figure out what you want to build

https://docs.pytest.org/en/stable/reference.html#id53

Writing a pytest Hook Plugin
● Figure out what you want to build

● Find hook we can use to implement desired behavior

https://docs.pytest.org/en/stable/reference.html#id53

Bootstrapping Hooks

pytest_load_initial_conftests
pytest_cmdline_parse
pytest_cmdline_main

Initialization Hooks

pytest_addoption
pytest_addhooks
pytest_configure
pytest_unconfigure
pytest_sessionstart
pytest_sessionfinish
pytest_plugin_registered

pytest Hooks: Role Call

https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_load_initial_conftests
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_cmdline_parse
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_cmdline_main
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_addoption
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_addhooks
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_configure
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_unconfigure
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_sessionstart
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_sessionfinish
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_plugin_registered

Collection Hooks

pytest_collection
pytest_addhooks
pytest_collect_directory
pytest_collect_file
pytest_pycollect_makemodule
pytest_pycollect_makeitem
pytest_generate_tests
pytest_make_parametrize_id
pytest_collection_modifyitems
pytest_collection_finish

Test Running Hooks

pytest_runtestloop
pytest_runtest_protocol
pytest_runtest_logstart
pytest_runtest_setup
pytest_runtest_call
pytest_runtest_teardown
pytest_runtest_makereport
pytest_pyfunc_call

pytest Hooks: Role Call

https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collection
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_addhooks
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collect_directory
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collect_file
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_pycollect_makemodule
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_pycollect_makeitem
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_generate_tests
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_make_parametrize_id
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collection_modifyitems
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collection_finish
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtestloop
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_protocol
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_logstart
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_setup
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_call
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_teardown
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_makereport
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_pyfunc_call

Reporting Hooks

pytest_collectstart
pytest_make_collect_report
pytest_itemcollected
pytest_collectreport
pytest_deselected
pytest_report_header
pytest_report_collectionfinish
pytest_report_teststatus
pytest_terminal_summary
pytest_fixture_post_finalizer

pytest Hooks: Role Call

pytest_fixture_setup
pytest_warning_captured
pytest_runtest_logreport
pytest_assertrepr_compare
pytest_assertion_pass

https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collectstart
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_make_collect_report
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_itemcollected
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_collectreport
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_deselected
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_report_header
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_report_collectionfinish
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_report_teststatus
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_terminal_summary
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_fixture_post_finalizer
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_fixture_setup
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_warning_captured
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_runtest_logreport
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_assertrepr_compare
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_assertion_pass

Debugging / Interaction hooks

pytest_internalerror
pytest_keyboard_interrupt
pytest_exception_interact
pytest_enter_pdb

pytest Hooks: Role Call

https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_internalerror
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_keyboard_interrupt
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_exception_interact
https://docs.pytest.org/en/stable/reference.html#_pytest.hookspec.pytest_enter_pdb

TODO make picture

Writing Your Next Plugin

Is there a plugin system?

Find and copy existing plugins

Sandbox Development Environment

Add breakpoints to host application code

Add logging

Testing Plugins -- Integration Tests

Testing Plugins -- Testing Matrix

Let’s Recap!

Plugins are software
components that extend or
enhance an existing program

Plugin System Checklist

❏ Requires host application

❏ Communication channel between host and plugin

❏ Register with the host application

❏ Load plugins dynamically at runtime

❏ Respond when called upon by the host application

Host
Application

Tips for writing your next plugin

● Read the documentation

● Find and copy existing plugins

● Create a Sandbox Development Environment

● Add breakpoints in host application codebase

● Add logging

● Test using integration test

● Test all versions you plan to support

Resources -- Videos
● Darlene Wong: How to Write Pytest Plugins

● Doug Hellman: Extending Your Applications with Plugins

● Floris Bruynooghe: The hook-based plugin architecture of py.test

● Raphael Pierzina: Advanced pytest

● Rose Judge: Plug-in to Python

● Sandi Metz: Go Ahead, Make a Mess

https://www.youtube.com/watch?v=QwDhzFkE9J4
https://www.youtube.com/watch?v=7K72DPDOhWo
https://www.youtube.com/watch?v=zZsNPDfOoHU
https://www.youtube.com/watch?v=gJtE-anbcww
https://youtu.be/9V7n1SUEl5g?t=165
https://www.youtube.com/watch?v=mpA2F1In41w

Resources -- Websites / Blogs
● Django Docs: Index

● Flask Docs: Extension Development

● pluggy: the pytest plugin system

● pytest Docs: Writing plugins

● Omar Elgabry: Plug-in Architecture

● Stevedore Documentation

https://docs.djangoproject.com/en/3.0/
https://flask.palletsprojects.com/en/1.1.x/extensiondev/
https://pluggy.readthedocs.io/en/latest/#
https://docs.pytest.org/en/stable/writing_plugins.html
https://medium.com/omarelgabrys-blog/plug-in-architecture-dec207291800
https://docs.openstack.org/stevedore/latest/

● Freeman, Eric & Robson, Elizabeth. (2004). Head First Design Patterns: A
Brain-Friendly Guide. 1st ed. Sebastopol, CA: O’Reilly Media

○
● “Gang of Four”. (1994). Design Patterns: Elements of Reusable Object-Oriented

Software. 1st ed. Boston, MA: Addison-Wesley Professional

Resources -- Books

Thank You

Github: alysivji/talks

Twitter: @CaiusSivjus

Blog: https://alysivji.github.io

Slides: https://bit.ly/write-a-plugin

@CaiusSivjus

https://github.com/alysivji/talks
https://twitter.com/CaiusSivjus
https://alysivji.github.io
https://bit.ly/write-a-plugin
https://twitter.com/CaiusSivjus

Acknowledgements (Easter Egg)

● ChiPy
○

● AS, ES, CF, CL, TD, LG, SI, JO, RB, AS

@CaiusSivjus

https://twitter.com/CaiusSivjus

Thank You

Github: alysivji/talks

Twitter: @CaiusSivjus

Blog: https://alysivji.github.io

Slides: https://bit.ly/write-a-plugin

@CaiusSivjus

https://github.com/alysivji/talks
https://twitter.com/CaiusSivjus
https://alysivji.github.io
https://bit.ly/write-a-plugin
https://twitter.com/CaiusSivjus

Appendix
Slides below here do not fit into current form of presentation.

@CaiusSivjus

https://twitter.com/CaiusSivjus

Plugin Development Tip #1

Sandbox Development Environment

@CaiusSivjus

https://twitter.com/CaiusSivjus

Extending pytest...

Fixtures Hooks

Fixtures

- reusable test code

- operate within test functions

Extending pytest...

Hooks

Fixtures

- reusable test code

- operate within test functions

Extending pytest...

Hooks

- customize how pytest works

- add new functionality to pytest

Ending
Like everything else in programming, once we deconstruct the problem into
smaller chunks, we can reason about implementation details clearly.

We assume things are more difficult than they appear. This is especially true for
problems we have not seen before.

Key Notes
● there are design patterns (strategy) we can use, but they all follow the same

theme
● Aside: Design Patterns provide a blueprint

○ The design we built uses the strategy pattern
○ Strategy pattern

● break down concepts to primary parts of Object Oriented Programming
○ Design patterns make sense when you think of underlying components

● Abstract Base Classes make sense, but it’s beyond the scope of this talk
○ If you do make a plugin system, use ABCs

