Context and objective

Problem: An industrial goods distributor wants to find the optimal price that maximizes total revenues less transportation costs and storage costs.

Solution: Our solution effectively combines the use of Probabilistic Programming with MILP in a modular architecture that reflects the company value drivers’ tree:

1. **Identify the key drivers**
 - Endogenous and exogenous
 - Fat-tailed distributions

2. **Estimate distribution of key optimization parameters**
 - Generative modelling with Probabilistic Programming
 - Uncertainty in model and model parameters: Bayesian Machine Learning
 - MCMC and (Variational) Inference off-the-shelf

3. **Optimization**
 - Leverage Python interfaces to solvers (e.g. GurobiPy or Pyomo)
 - Robust and Stochastic Programming
 - Alternative methodological approaches: Meta-Heuristics, Reinforcement Learning, ...

Key modules:
- Estimation of the distribution of demand (for a product at a specific price point)
- Estimation of transportation and storage unit costs
- Mathematical Programming module that defines the optimal shipping strategy

Conclusions

- Generative models of key optimization parameters are necessary input to Robust Optimization and Stochastic Programming problems
- Ongoing work: seamless interoperability between Probabilistic Programming frameworks and Python interfaces to solvers